Skip to main content
Log in

Review of Silicon Recovery and Purification from Saw Silicon Powder

  • Recycling Silicon and Silicon Compounds
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The demand for crystalline silicon wafers is continuing to increase. It is inevitable that high-purity silicon will be lost as loose abrasive slurry silicon powder (LASSP) and diamond wire saw silicon powder (DWSSP) during the process of wafer preparation. For this reason, some advanced processes or methods require further development to solve the problems of the high production cost, silicon wafer shortage, and environmental pollution caused by these silicon resources. Some processes and technologies for silicon recovery and purification from LASSP and DWSSP are comprehensively reviewed in this paper. These investigations inform some anticipated technological trends and required improvements, and encourage the development of technological solutions. Furthermore, the authors propose that high-purity silicon for industrial implementations can be recycled from LASSP and DWSSP via a combined process of an acid leaching pretreatment and a high-temperature treatment. Additionally, some existing deficiencies and areas that require enhancement are also proposed for improved impurity removal and silicon recovery with a higher process efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. 22.

Fig. 2

Reprinted with permission from Ref. 36.

Fig. 3

Reprinted with permission from Ref. 38.

Fig. 4

Reprinted with permission from Ref. 40.

Fig. 5

Reprinted with permission from Ref. 41.

Fig. 6

Reprinted with permission from Ref. 43.

Fig. 7

Reprinted with permission from Ref. 44.

Fig. 8

Reprinted with permission from Ref. 44.

Fig. 9

Reprinted with permission from Ref. 46.

Fig. 10

Reprinted with permission from Ref. 50.

Fig. 11

Reprinted with permission from Ref. 56.

Fig. 12

Reprinted with permission from Ref. 76.

Similar content being viewed by others

References

  1. Z. Ding, Z.Q. Chen, T.Y. Ma, C.T. Lu, W.H. Ma, and L. Shaw, Energy Stor. Mater. 27, 466 (2020).

    Article  Google Scholar 

  2. Z. Ding, Y. Lu, L. Li, and L. Shaw, Energy Stor. Mater. 20, 24 (2019).

    Article  Google Scholar 

  3. Z. Ding, P.K. Wu, and L. Shaw, J. Alloys Compd. 806, 350 (2019).

    Article  Google Scholar 

  4. Z. Ding and L. Shaw, ACS Sustain. Chem. Eng. 7, 15064 (2019).

    Article  Google Scholar 

  5. Z. Ding, H. Li, and L. Shaw, Chem. Eng. J. 385, 123856 (2020).

    Article  Google Scholar 

  6. X.W. Yang, A.Q. Zheng, Z.L. Zhao, S.P. Xia, Y.Y. Fan, C.J. Zhou, F.Z. Cao, L.Q. Jiang, G.Q. Wei, Z. Huang, and H.B. Li, Cellulose 26, 9687 (2019).

    Article  Google Scholar 

  7. P. Linh, Energ. Econ. 81, 355 (2019).

    Article  Google Scholar 

  8. C. Ramírez-Márquez, M.V. Otero, J.A. Vázquez-Castillo, M. Martín, and J.G. Segovia-Hernández, J. Clean. Prod. 170, 1579 (2018).

    Article  Google Scholar 

  9. N. Sánchez-Pantoja, R. Vidal, and M.C. Pastor, Renew. Sustain. Energy Rev. 98, 227 (2018).

    Article  Google Scholar 

  10. A. Tihane, M. Boulaid, A. Elfanaoui, M. Nya, and A. Ihlal, Mater. Today Proc. 24, 85 (2020).

    Article  Google Scholar 

  11. P.G.V. Sampaio and M.O.A. González, Renew. Sustain. Energy Rev. 74, 590 (2017).

    Article  Google Scholar 

  12. I.M. Kwembur, J.L.C. McClel, E.E. van Dyk, and F.J. Vorster, Physica B 581, 411938 (2020).

    Article  Google Scholar 

  13. S.H. Lee, M.F. Bhopal, D.W. Lee, and S.H. Lee, Mater. Sci. Semicond. Proc. 79, 66 (2018).

    Article  Google Scholar 

  14. S.Q. Ren, P.T. Li, D.C. Jiang, Y. Tan, J.Y. Li, and L. Zhang, Appl. Therm. Eng. 106, 875 (2016).

    Article  Google Scholar 

  15. C. Battaglia, A. Cuevas, and S.D. Wolf, Energy Environ. Sci. 9, 1552 (2016).

    Article  Google Scholar 

  16. https://www.eia.gov, EIA - Electricity Data

  17. Y.F. Gao, P.Q. Ge, L. Zhang, and W.B. Bi, Mater. Sci. Semicond. Proc. 103, 104642 (2019).

    Article  Google Scholar 

  18. H.P. Xiao, H.R. Wang, N. Yu, R.G. Liang, Z. Tong, Z. Chen, and J.H. Wang, J. Mater. Process. Technol. 273, 116267 (2019).

    Article  Google Scholar 

  19. X.Y. Li, Y.F. Gao, Y.K. Yin, L.Y. Wang, and T.Z. Pu, J. Manuf. Process. 49, 82 (2020).

    Article  Google Scholar 

  20. M. Bhagavat, V. Prasad, and I. Kao, J. Tribol. 122, 394 (1999).

    Article  Google Scholar 

  21. M.R. Ge, H.T. Zhu, C.Z. Huang, A. Liu, and W.B. Bi, Mater. Sci. Semicond. Proc. 74, 261 (2018).

    Article  Google Scholar 

  22. Y.F. Gao, P.Q. Ge, and T.Y. Liu, Mater. Sci. Semicond. Proc. 56, 106 (2016).

    Article  Google Scholar 

  23. H. Wu, Precis. Eng. 43, 1 (2016).

    Article  Google Scholar 

  24. A. Kumar, S. Kaminski, S.N. Melkote, and C. Arcona, Wear 364, 163 (2016).

    Article  Google Scholar 

  25. X.G. Yu, P. Wang, X.Q. Li, and D.R. Yang, Sol. Energy Mater. Sol. C 98, 337 (2012).

    Article  Google Scholar 

  26. A. Bidiville, K. Wasmer, R. Kraft, and C. Ballif, in Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, 1400 (2009)

  27. A. Kumar and S.N. Melkote, Procedia Manuf. 21, 549 (2018).

    Article  Google Scholar 

  28. X.Y. Li, Y.F. Gao, P.Q. Ge, L. Zhang, and W.B. Bi, Mater. Sci. Semicond. Proc. 91, 316 (2019).

    Article  Google Scholar 

  29. P.K. Basu, K. Sreejith, T.S. Yadav, A. Kottanthariyil, and A.K. Sharma, Sol. Energy Mater. Sol. C 185, 406 (2018).

    Article  Google Scholar 

  30. S. Ozturk, L. Aydin, and E. Celik, Sol. Energy 161, 109 (2018).

    Article  Google Scholar 

  31. International Technology Roadmap for Photovoltaic (ITRPV), Results 2018, 10th edition, March 2019

  32. A.P. Dong, L.F. Zhang, N. Lucas, and W. Damoah, JOM 63, 237 (2011).

    Article  Google Scholar 

  33. S. Srinivasan and V.K.R. Kottam, Renew. Sustain. Energy Rev. 81, 874 (2018).

    Article  Google Scholar 

  34. E. Klugmann-Radziemska and A. Kuczyńska-Łażewska, Sol. Energy Mater. Sol. C 205, 110259 (2020).

    Article  Google Scholar 

  35. K. Tomono, S. Miyamoto, T. Ogawa, H. Furuya, Y. Okamura, M. Yoshimoto, R. Komatsu, and M. Nakayama, Sep. Purif. Technol. 120, 304 (2013).

    Article  Google Scholar 

  36. S.M.N. Iio, S. Taniguchi, H. Satone, and K. Arafune, in 38th IEEE Photovoltaic Specialists Conference (IEEE, 2012)

  37. A. Yoko and Y. Oshima, J. Supercrit. Fluid. 75, 1 (2013).

    Article  Google Scholar 

  38. Y.P. Xiao and Y.X. Yang, Adv. Mater. Res. 295, 2235–2240 (2011).

    Article  Google Scholar 

  39. Z.Y. Shen, C.Y. Chen, and M.T. Lee, J. Hazard. Mater. 362, 115 (2019).

    Article  Google Scholar 

  40. A. Müller and P.M. Nasch, Active Solar Energy Photovoltaic Programme Summary Report (2004)

  41. T.Y. Wang, Y.C. Lin, C.Y. Tai, R. Sivakumar, D.K. Rai, and C.W. Lan, J. Cryst. Growth 310, 3403 (2008).

    Article  Google Scholar 

  42. Y.F. Wu and Y.M. Chen, Sep. Purif. Technol. 68, 70 (2009).

    Article  Google Scholar 

  43. F. Chigondo, Silicon 10, 789 (2018).

    Article  Google Scholar 

  44. Y.C. Lin, T.Y. Wang, C.W. Lan, and C.Y. Tai, Powder Technol. 200, 216 (2010).

    Article  Google Scholar 

  45. T.H. Tsai, J. Hazard. Mater. 189, 526 (2011).

    Article  Google Scholar 

  46. P.F. Xing, J. Guo, Y.X. Zhuang, F. Li, and G.F. Tu, Int. J Min. Met. Mater. 20, 947 (2013).

    Article  Google Scholar 

  47. T.H. Tsai, Y.P. Shih, and Y.F. Wu, J. Air. Waste. Manag. 63, 521 (2013).

    Article  Google Scholar 

  48. S. Liu, K. Huang, and H.M. Zhu, Sep. Purif. Technol. 118, 448 (2013).

    Article  Google Scholar 

  49. S.A. Sergiienko, B.V. Pogorelov, and V.B. Daniliuk, Sep. Purif. Technol. 133, 16 (2014).

    Article  Google Scholar 

  50. M. Beier, C. Reimann, J. Friedrich, U.A. Peuker, T. Leißner, M. Gröschel, and V. Ischenko, Materials Science Forum, Vol. 959 (Zurich: Trans Tech, 2019).

    Google Scholar 

  51. H.P. Hsu, W.P. Huang, C.F. Yang, and C.W. Lan, Sep. Purif. Technol. 133, 1 (2014).

    Article  Google Scholar 

  52. H.C. Li and W.S. Chen, Precis. Eng. 136, 53 (2017).

    Google Scholar 

  53. X.Q. Wei, C.Q. Yin, Y.P. Wan, and L. Zhou, Sep. Purif. Technol. 149, 457 (2015).

    Article  Google Scholar 

  54. H.Y. Wang, Y. Tan, J.Y. Li, Y.Q. Li, and W. Dong, Sep. Purif. Technol. 89, 91 (2012).

    Article  Google Scholar 

  55. J.C. Li, K. Huang, and H.M. Zhu, Chem. Eng. Sci. 127, 25 (2015).

    Article  Google Scholar 

  56. C.F. Yang, H.P. Hsu, and C.W. Lan, Sep. Purif. Technol. 149, 38 (2015).

    Article  Google Scholar 

  57. D. Wang, Z.K. Wang, Z. Wang, G.Y. Qian, X.Z. Gong, and L. Xin, Sep. Purif. Technol. 231, 115902 (2020).

    Article  Google Scholar 

  58. Y. Liu, J. Kong, Y.X. Zhuang, P.F. Xing, H.Y. Yin, and X.T. Luo, J. Clean. Prod. 224, 709 (2019).

    Article  Google Scholar 

  59. V.P. Miguel, S.C. Tandeep, Y. Gregory, F.E. Henry, and B. Pratim, Ind. Eng. Chem. Res. 54, 5914 (2015).

    Article  Google Scholar 

  60. V.P. Miguel, S.C. Tandeep, Y. Gregory, and B. Pratim, Sci. Rep. 7, 40535 (2017).

    Article  Google Scholar 

  61. H.L. Yang, T. Liu, C.E. Liu, H.P. Hsu, and C.W. Lan, Waste Manag. 84, 204 (2019).

    Article  Google Scholar 

  62. S.C. Yang, W.H. Ma, K.X. Wei, K.Q. Xie, and Z. Wang, Sep. Purif. Technol. 228, 115754 (2019).

    Article  Google Scholar 

  63. Z. Ding, W.H. Ma, K.X. Wei, J.J. Wu, Y. Zhou, and K.Q. Xie, J. Non-Cryst. Solids 358, 2708 (2012).

    Article  Google Scholar 

  64. P.T. Li, S.Q. Ren, D.C. Jiang, K. Wang, J.Y. Li, and Y. Tan, Mater. Sci. Semicond. Proc. 67, 1 (2017).

    Article  Google Scholar 

  65. P.T. Li, K. Wang, S.Q. Ren, D.C. Jiang, S. Shi, Y. Tan, F. Wang, and H.M. Noor ul HudaKhan Asghar, Sol. Energy Mater. Sol. C 186, 50 (2018).

    Article  Google Scholar 

  66. T.H. Tsai, Sep. Purif. Technol. 68, 24 (2009).

    Article  Google Scholar 

  67. D.G. Li, P.F. Xing, Y.X. Zhuang, F. Li, and G.F. Tu, Trans. Nonferrous Met. Soc. 24, 1237 (2014).

    Article  Google Scholar 

  68. S. Liu, K. Huang, and H.M. Zhu, Sep. Purif. Technol. 172, 113 (2017).

    Article  Google Scholar 

  69. S.C. Yang, K.X. Wei, W.H. Ma, K.Q. Xie, J.J. Wu, and Y. Lei, J. Hazard. Mater. 368, 1 (2019).

    Article  Google Scholar 

  70. J. Kong, X. Jin, Y. Liu, D.H. Wei, S.N. Jiang, S.B. Gao, Z.B. Feng, P.F. Xing, and X.T. Luo, Sep. Purif. Technol. 221, 261 (2019).

    Article  Google Scholar 

  71. S.C. Yang, X.H. Wan, K.X. Wei, W.H. Ma, and Z. Wang, J. Clean. Prod. 248, 119256 (2020).

    Article  Google Scholar 

  72. N. Boutouchent-Guerfi, N. Drouiche, S. Medjahed, M. Ould-Hamou, and F. Sahraoui, J. Cryst. Growth 447, 27 (2016).

    Article  Google Scholar 

  73. S. Liu, K. Huang, and H.M. Zhu, Chem. Eng. J. 299, 276 (2016).

    Article  Google Scholar 

  74. J.J. Wu, D. Yang, M. Xu, W.H. Ma, Q. Zhou, Z.F. Xia, Y. Lei, K.X. Wei, S.Y. Li, Z.J. Chen, and K.Q. Xie, Sep. Purif. Rev. 49, 68 (2020).

    Article  Google Scholar 

  75. H.F. Lu, K.X. Wei, W.H. Ma, K.Q. Xie, J.J. Wu, and Y. Lei, Metall. Mater. Trans. B 48, 2768 (2017).

    Article  Google Scholar 

  76. L.Q. Huang, J. Chen, M. Fang, S. Thomas, A. Danaei, X.T. Luo, and M. Barati, J. Clean. Prod. 186, 718 (2018).

    Article  Google Scholar 

  77. M.D. Sousa, A. Vardelle, G. Mariaux, M. Vardelle, U. Michon, and V. Beudin, Sep. Purif. Technol. 161, 187 (2016).

    Article  Google Scholar 

  78. T. Lu, Y. Tan, J.Y. Li, and D.W. Deng, J. Clean. Prod. 203, 574 (2018).

    Article  Google Scholar 

  79. S.C. Yang, X.H. Wan, K.X. Wei, W.H. Ma, and Z. Wang, ACS Sustain. Chem. Eng. 8, 4146 (2020).

    Article  Google Scholar 

  80. J.M. Oh, H. Kim, H. Chang, B.K. Lee, H.D. Jang, and J.W. Lim, Int. J. Mater. Res. 106, 937 (2015).

    Article  Google Scholar 

  81. J. Kong, P.F. Xing, Y. Liu, J.Q. Wang, X. Jin, Z.B. Feng, and X.T. Luo, Silicon 11, 367 (2019).

    Article  Google Scholar 

  82. L.Q. Huang, A. Danaei, M. Fang, S. Thomas, X.T. Luo, and M. Barati, Vacuum 163, 164 (2019).

    Article  Google Scholar 

  83. X. Li, J. Wu, M. Xu, and W.H. Ma, J. Clean. Prod. 211, 695 (2019).

    Article  Google Scholar 

  84. T. Lu, Y. Tan, J.Y. Li, and S. Shi, J. Hazard. Mater. 379, 120796 (2019).

    Article  Google Scholar 

  85. A. Benayad, H. Hajjaji, F. Coustier, M. Benmansour, and A. Chabli, J. Appl. Phys. 120, 235308 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Key R&D Program of China (Nos. 2018YFC1901801, 2018YFC1901805), the Major Science and Technology Projects in Yunnan Province (No. 2019ZE007), the Reserve Talents of Young and Middle-aged Academic and Technical Leaders in Yunnan Province (No. 2018HB009), the National Natural Science Foundation of China (No. 51904134), the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT-17R48).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Abbreviation

LAS:

Loose abrasive slurry (–);

DWS:

Fixed abrasive diamond wire sawing (–);

LASSP:

Loose abrasive slurry silicon powder (–);

DWSSP:

Diamond wire sawn silicon powder (–);

Equations

$$ \frac{{{\text{d}}V(t)}}{{{\text{d}}t}} = \frac{\Delta P}{{\mu \left[ {R_{0} + R_{c} \rho \left\{ {V(t)} \right\}^{n + 1} } \right]}} $$
(1)
$$ u_{pm} = \frac{{(\rho_{p} - \rho )}}{18u}D_{P}^{2} g $$
(2)
$$ \frac{{\upsilon_{\text{SiC}} }}{{\upsilon_{\text{Si}} }} = \frac{{D_{\text{SiC}}^{2} (\rho_{\text{SiC}} - \rho )}}{{D_{\text{Si}}^{2} (\rho_{\text{Si}} - \rho )}} $$
(3)
$$ x = \left( {\frac{RTt}{{3\pi \mu D_{P} N_{A} }}} \right)^{0.5} $$
(4)
$$ t = \frac{d}{{V_{t} (\text{Sin} \theta + \text{Cos} \theta \cdot \tan \alpha )}} $$
(5)
$$ {\text{SiO}}_{2} + 6{\text{HF}} \to {\text{H}}_{2} ({\text{SiF}}_{6} ) + 2{\text{H}}_{2} {\text{O}} $$
(6)
$$ \left\{ O \right\}{\text{wt}} .\% = 4.0 \times 10^{ - 3} (1 + 9{\text{Si wt}} .\% ) $$
(7)
$$ {\text{Si}} + 2{\text{NaOH}} + {\text{H}}_{2} {\text{O}} \to {\text{Na}}_{2} {\text{SiO}}_{3} + 2{\text{H}}_{2} $$
(8)
$$ 4{\text{Al}} + 3{\text{SiC}} \to {\text{Al}}_{4} {\text{C}}_{3} + 3{\text{Si}} $$
(9)
$$ 2{\text{SiC}}({\text{s}}) + {\text{SiO}}_{2} ({\text{l}}) = 3{\text{Si}}({\text{l}}) + 2{\text{CO}}({\text{g}}) $$
(10)
$$ {\text{Si}}({\text{s}}) + {\text{SiO}}_{2} ({\text{s}}) = 2{\text{SiO}}({\text{g}}) $$
(11)
$$ {\text{SiO}}_{2} ({\text{s}}) + 2{\text{C}}({\text{s}}) \to {\text{Si}}({\text{s}}) + 2{\text{CO}}({\text{g}}) $$
(12)
$$ \frac{{(1 - x)^{ - 2} - 1}}{2} = \left( {1.11 \times 10^{14} C_{\text{HCl}}^{2.81} \exp \left( { - \frac{97300}{RT}} \right)} \right)t $$
(13)
$$ {\text{Si}}({\text{s}}) + 2{\text{H}}_{2} {\text{O}}({\text{l}}) = {\text{SiO}}_{2} ({\text{s}}) + 2{\text{H}}_{2} ({\text{g}}) $$
(14)

Notation

  1. 1.

    \( V(t) \)—filtration volume [m3];

  2. 2.

    \( \Delta P \)—pressure [Pa];

  3. 3.

    \( R_{0} \)—filtration resistance [m−3];

  4. 4.

    \( R_{c} \)—cake resistance [m−3 kg−1];

  5. 5.

    \( n \)—compression coefficient;

  6. 6.

    \( \rho \)—concentration of solid materials in waste coolant [kg m3];

  7. 7.

    \( \rho_{P} \)—density of the particle;

  8. 8.

    \( \rho \)—density of the solution;

  9. 9.

    \( u \) –viscosity of the solution

  10. 10.

    \( \upsilon_{SiC} \) and \( \upsilon_{Si} \)—the sedimentation velocities of the SiC and Si particles, respectively;

  11. 11.

    \( D_{SiC} \) and \( D_{Si} \) –particle diameters of the SiC and Si particles (μm), respectively

  12. 12.

    \( x \)—mean square diffusion displacement;

  13. 13.

    \( R \)—gas constant (8.314 [J (mol K)−1]);

  14. 14.

    \( T \)—temperature (K);

  15. 15.

    \( t \)—time;

  16. 16.

    \( \mu \)—viscosity of solution;

  17. 17.

    \( D_{P} \)—particle diameters (μm);

  18. 18.

    \( N_{A} \)—Avogadro constant;

  19. 19.

    \( d \)—fixed depth in settling tank;

  20. 20.

    \( V_{t} \)—terminal velocities for Si and SiC;

  21. 21.

    \( \theta \)—angles for particles move along inclined paths;

  22. 22.

    \( \alpha \)—ramp angle;

  23. 23.

    \( x \)—removal efficiency (%);

  24. 24.

    \( C \)—HCl concentration (M);

  25. 25.

    \( T \)—reaction temperature (K);

  26. 26.

    \( t \)—leaching duration (min);

  27. 27.

    \( R \)—ideal gas constant (8.314 [J (mol K)−1]);

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Yang, S., Wan, X. et al. Review of Silicon Recovery and Purification from Saw Silicon Powder. JOM 72, 2633–2647 (2020). https://doi.org/10.1007/s11837-020-04183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04183-8

Navigation