Skip to main content
Log in

In Situ Preparation of Micro–Nano Tantalum Carbide Ceramic

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties as well as the formation and morphological evolution mechanism of micro–nano TaC carbide prepared by an in situ casting–heat treatment reaction and chemical extraction method have been investigated. The size of the TaC particles was approximately 50–900 nm. The formation process and mechanism included nucleation growth of TaC grains and a diffusion-type solid-phase transition. Due to the “freezing” of the microstructure, the movement of the grain boundaries is inhibited, resulting in ultrafine TaC ceramic particles. The TaC particles preferably grow as cubes enclosed by {100} facets with minimized total surface free energy, indicating that both the intrinsic lattice structure and the growth conditions determine the final morphology of the TaC particles. In addition, the hardness and elastic modulus of the TaC ceramic were found to be 26.5 ± 0.4 GPa and 506.4 ± 5.8 GPa, respectively. Moreover, the fracture toughness was found to be 3.8 ± 0.1 MPa m1/2. The toughening mechanism of the TaC ceramic layer includes crack deflection and crack bridging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Ma, W. Shen, P. Zhang, J. Zhang, Q. Wang, and C. Ge, Mater. Lett. 65, 96 (2011).

    Google Scholar 

  2. M. Ali, M. Ürgen, M.A. Atta, A. Kawashima, and M. Nishijima, Mater. Chem. Phys. 138, 944 (2013).

    Google Scholar 

  3. X. Zhang, G.E. Hilmas, and W.G. Fahrenholtz, Mater. Sci. Eng. A 501, 37 (2009).

    Google Scholar 

  4. A. Nisar, A.S.T. Venkateswaran, N. Sreenivas, and K. Balani, Corros. Sci. 109, 50 (2016).

    Google Scholar 

  5. A. Nisar and A.S.K. Balani, J. Mater. Res. 31, 682 (2016).

    Google Scholar 

  6. E. Ghasali, K. Shirvanimoghaddam, A.H. Pakseresht, M. Alizadeh, and T. Ebadzadeh, J. Alloys Compd. 705, 283 (2017).

    Google Scholar 

  7. A.E. Martinelli, D.S.A. Paulo, R.M. Nascimento, M.P. Távora, U.U. Gomes, and C. Alves, J. Mater. Sci. 42, 314 (2006).

    Google Scholar 

  8. E.M. Salleh and Z. Hussain, Key Eng. Mater. 471–472, 798 (2011).

    Google Scholar 

  9. T. Kim and M.S. Wooldridge, J. Am. Ceram. Soc. 84, 976 (2010).

    Google Scholar 

  10. N.A. Hassine, J.G.P. Binner, and T.E. Cross, Int. J. Refract. Met. Hard Mater. 13, 353 (1995).

    Google Scholar 

  11. S.A. Ghaffari and M.A. Faghihi-Sani, Int. J. Refract. Met. Hard Mater. 41, 180 (2013).

    Google Scholar 

  12. T. Ishigaki, S.M. Oh, J.G. Li, and D.W. Park, Sci. Technol. Adv. Mater. 6, 111 (2016).

    Google Scholar 

  13. D.H. Kwon, S.H. Hong, and B.K. Kim, Mater. Lett. 58, 3863 (2004).

    Google Scholar 

  14. M.D. Sacks, C.A. Wang, Z. Yang, and A. Jain, J. Mater. Sci. 39, 6057 (2004).

    Google Scholar 

  15. A. Nisar, S. Ariharan, and K. Balani, Int. J. Refract. Met. Hard Mater. 73, 221 (2018).

    Google Scholar 

  16. L.M. Liu, F. Ye, Y. Zhou, and Z.G. Zhang, J. Am. Ceram. Soc. 93, 2945 (2010).

    Google Scholar 

  17. Z. Cheng, P. Foroughi, and A. Behrens, Ceram. Int. 43, 3431 (2017).

    Google Scholar 

  18. N. Zhao, Y. Xu, J. Wang, L. Zhong, V.E. Ovcharenko, and X. Cai, Surf. Coat. Technol. 286, 347 (2016).

    Google Scholar 

  19. L. Feng, S.H. Lee, and B.L. Yoon, Ceram. Int. 41, 11637 (2015).

    Google Scholar 

  20. H. Bai, L. Zhong, Z. Shang, Y. Xu, H. Wu, J. Bai, and Y. Ding, J. Alloys Compd. 771, 406 (2019).

    Google Scholar 

  21. A.M. Soleimanpour, P. Abachi, and A. Simchi, Int. J. Refract. Met. Hard Mater. 31, 141 (2012).

    Google Scholar 

  22. K. Song, Y. Xu, N. Zhao, L. Zhong, Z. Shang, L. Shen, and J. Wang, J. Mater. Eng. Perform. 25, 3057 (2016).

    Google Scholar 

  23. D. Chicot, A. Pertuz, F. Roudet, M.H. Staia, and J. Lesage, Mater. Sci. Technol. 20, 877 (2004).

    Google Scholar 

  24. F. Ye, Y. Xu, M. Hojamberdiev, Y. Lai, C. Wang, and X. Wang, J. Mater. Eng. Perform. 24, 2898 (2016).

    Google Scholar 

  25. X. Cai, Y. Xu, N. Zhao, L. Zhong, Z. Zhao, and J. Wang, Surf. Coat. Technol. 299, 135 (2016).

    Google Scholar 

  26. F. Bouville, E. Maire, S. Meille, B. Van de Moortele, A.J. Stevenson, and S. Deville, Nat. Mater. 13, 508 (2014).

    Google Scholar 

  27. D. Casellas, J. Caro, S. Molas, J.M. Prado, and I. Valls, Acta Mater. 55, 4277 (2007).

    Google Scholar 

  28. R.O. Ritchie, Mater. Sci. Eng., A 103, 15 (1988).

    Google Scholar 

  29. Z. Zhao, P. Hui, F. Liu, X. Wang, B. Li, Y. Xu, L. Zhong, and M. Zhao, J. Alloys Compd. 790, 189 (2019).

    Google Scholar 

  30. M.M. Renjo, L. Ćurković, S. Štefančić, and D. Ćorić, Dent. Mater. 30, 371 (2014).

    Google Scholar 

  31. L. Silvestroni, A. Bellosi, C. Melandri, D. Sciti, J.X. Liu, and G.J. Zhang, J. Eur. Ceram. Soc. 31, 619 (2011).

    Google Scholar 

  32. F. Rezaei, M.G. Kakroudi, V. Shahedifar, N.P. Vafa, and M. Golrokhsari, Ceram. Int. 43, 3489 (2017).

    Google Scholar 

  33. A. Nino, T. Hirabara, S. Sugiyama, and H. Taimatsu, Int. J. Refract. Met. Hard Mater. 52, 203 (2015).

    Google Scholar 

  34. J.M. Lonergan, W.G. Fahrenholtz, G.E. Hilmas, and W. Lee, J. Am. Ceram. Soc. 98, 2344 (2015).

    Google Scholar 

  35. K. Balani, S.R. Bakshi, D. Lahiri, A. Agarwal, and K. Balani, Int. J. Appl. Ceram. Technol. 7, 846 (2010).

    Google Scholar 

  36. I.W. Chen and X.H. Wang, Nature 404, 168 (2000).

    Google Scholar 

  37. H. Bai, L. Zhong, Z. Shang, Y. Xu, H. Wu, J. Bai, B. Cao, and J. Wei, J. Alloys Compd. 768, 340 (2018).

    Google Scholar 

  38. L. Zhong, Y. Xu, C. Li, F. Ye, X. Liu, and M. Hojamberdiev, J. Compos. Mater. 46, 895 (2011).

    Google Scholar 

  39. J. Nie, Y. Wu, P. Li, H. Li, and X. Liu, CrystEngComm 14, 2213 (2012).

    Google Scholar 

  40. Y. Yuan and Z. Li, J. Alloys Compd. 738, 379 (2018).

    Google Scholar 

  41. J. Prywer, Prog. Cryst. Growth Charact. Mater. 50, 1 (2005).

    Google Scholar 

  42. Y. Xia, Y. Xiong, B. Lim, and S.E. Skrabalak, Angew. Chem. Int. Ed. Engl. 48, 60 (2009).

    Google Scholar 

  43. D.E. Grove, U. Gupta, and A.W. Castleman, ACS Nano 4, 49 (2010).

    Google Scholar 

  44. R. Wang, W. Lu, and L. Hogan, Metall. Trans. A 28, 1233 (1997).

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 51704232), Programs of Key Research and Development Plan of Shaanxi Province (Nos. 2017ZDXM-GY-032 and 2018ZDXM-GY-145), Innovation Capability Support Program of Shaanxi (No. 2019-TD019), Fund of State Key Laboratory of Long-Life High Temperature Materials (No. DTCC28EE190226), and Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016JQ5018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Shang or Lisheng Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Z., Bai, H., Zhong, L. et al. In Situ Preparation of Micro–Nano Tantalum Carbide Ceramic. JOM 72, 2974–2982 (2020). https://doi.org/10.1007/s11837-020-04177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04177-6

Navigation