Skip to main content
Log in

Double core—shell nanostructured Sn-Cu alloy as enhanced anode materials for lithium and sodium storage

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Sn-based alloy materials are considered as a promising anode candidate for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), whereas they suffer from severe volume change during the discharge/charge process. To address the issue, double core—shell structured Sn-Cu@SnO2@C nanocomposites have been prepared by a simple co-precipitation method combined with carbon coating approach. The double core—shell structure consists of Sn-Cu multiphase alloy nanoparticles as the inner core, intermediate SnO2 layer anchored on the surface of Sn-Cu nanoparticle and outer carbon layer. The Sn-Cu@SnO2@C electrode exhibits outstanding electrochemical performances, delivering a reversible capacity of 396 mA·h·g−1 at 100 mA·g−1 after 100 cycles for LIBs and a high initial reversible capacity of 463 mA·h·g−1 at 50 mA·g−1 and a capacity retention of 86% after 100 cycles, along with a remarkable rate capability (193 mA·h·g−1 at 5000 mA·g−1) for SIBs. This work provides a viable strategy to fabricate double core—shell structured Sn-based alloy anodes for high energy density LIBs and SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park M G, Lee D H, Jung H, et al. Sn-based nanocomposite for Li-ion battery anode with high energy density, rate capability, and reversibility. ACS Nano, 2018, 12(3): 2955–2967

    Article  CAS  Google Scholar 

  2. Ying H, Han W Q. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Advanced Science, 2017, 4(11): 1700298

    Article  CAS  Google Scholar 

  3. Deng J, Luo W B, Chou S L, et al. Sodium-ion batteries: From academic research to practical commercialization. Advanced Energy Materials, 2018, 8(4): 1701428

    Article  CAS  Google Scholar 

  4. Nithyadharseni P, Reddy M V, Nalini B, et al. Sn-based intermetallic alloy anode materials for the application of lithium ion batteries. Electrochimica Acta, 2015, 161: 261–268

    Article  CAS  Google Scholar 

  5. Li Z, Ding J, Mitlin D. Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Accounts of Chemical Research, 2015, 48(6): 1657–1665

    Article  CAS  Google Scholar 

  6. Zhang H, Hasa I, Passerini S. Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials. Advanced Energy Materials, 2018, 8(17): 1702582

    Article  CAS  Google Scholar 

  7. Zhang Y, Li M, Huang F, et al. 3D porous Sb-Co nanocomposites as advanced anodes for sodium-ion batteries and potassium-ion batteries. Applied Surface Science, 2020, 499: 143907

    Article  CAS  Google Scholar 

  8. Wang M, Zhang F, Lee C S, et al. Low-cost metallic anode materials for high performance rechargeable batteries. Advanced Energy Materials, 2017, 7(23): 1700536

    Article  CAS  Google Scholar 

  9. Zhao M, Zhao Q, Qiu J, et al. Tin-based nanomaterials for electrochemical energy storage. RSC Advances, 2016, 6(98): 95449–95468

    Article  CAS  Google Scholar 

  10. Ruan B, Guo H P, Hou Y, et al. Carbon-encapsulated Sn@N-doped carbon nanotubes as anode materials for application in SIBs. ACS Applied Materials & Interfaces, 2017, 9(43): 37682–37693

    Article  CAS  Google Scholar 

  11. Kim J C, Kim D W. Electrospun Cu/Sn/C nanocomposite fiber anodes with superior usable lifetime for lithium- and sodium-ion batteries. Chemistry, 2014, 9(11): 3313–3318

    CAS  Google Scholar 

  12. Liu Y, Zhang N, Jiao L, et al. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Advanced Functional Materials, 2015, 25(2): 214–220

    Article  CAS  Google Scholar 

  13. Edison E, Satish R, Ling W C, et al. Nanostructured intermetallic FeSn2-carbonaceous composites as highly stable anode for Na-ion batteries. Journal of Power Sources, 2017, 343: 296–302

    Article  CAS  Google Scholar 

  14. Wang Z, Luo S, Chen F, et al. Three-dimensional porous carbon nanosheet networks anchored with Cu6Sn5@carbon as a highperformance anode material for lithium ion batteries. RSC Advances, 2016, 6(60): 54718–54726

    Article  CAS  Google Scholar 

  15. Wang Z, Dong K, Wang D, et al. In situ construction of multibuffer structure 3D CoSn@SnOx/CoOx@C anode material for ultralong life lithium storage. Energy Technology, 2019, 1900829

    Article  CAS  Google Scholar 

  16. Wang Z, Dong K, Wang D, et al. Monodisperse multicore—shell SnSb@SnOx/SbOx@C nanoparticles space-confined in 3D porous carbon networks as high-performance anode for Li-ion and Na-ion batteries. Chemical Engineering Journal, 2019, 371: 356–365

    Article  CAS  Google Scholar 

  17. Lei W X, Pan Y, Zhou Y C, et al. CNTs-Cu composite layer enhanced Sn-Cu alloy as high performance anode materials for lithium-ion batteries. RSC Advances, 2014, 4(7): 3233–3237

    Article  CAS  Google Scholar 

  18. Chen J, Yang L, Fang S, et al. Facile fabrication of graphene/Cu6Sn5 nanocomposite as the high performance anode material for lithium ion batteries. Electrochimica Acta, 2013, 105: 629–634

    Article  CAS  Google Scholar 

  19. Lin Y M, Abel P R, Gupta A, et al. Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. ACS Applied Materials & Interfaces, 2013, 5(17): 8273–8277

    Article  CAS  Google Scholar 

  20. Kim M G, Sim S, Cho J. Novel core—shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction. Advanced Materials, 2010, 22(45): 5154–5158

    Article  CAS  Google Scholar 

  21. Chen J, Yang L, Fang S, et al. Synthesis of mesoporous Sn-Cu composite for lithium ion batteries. Journal of Power Sources, 2012, 209: 204–208

    Article  CAS  Google Scholar 

  22. Thorne J S, Dunlap R A, Obrovac M N. (Cu6Sn5)1−xCx active/inactive nanocomposite negative electrodes for Na-ion batteries. Electrochimica Acta, 2013, 112: 133–137

    Article  CAS  Google Scholar 

  23. Yang J, Zhang J, Zhou X, et al. Sn-Co nanoalloys encapsulated in N-doped carbon hollow cubes as a high-performance anode material for lithium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10(41): 35216–35223

    Article  CAS  Google Scholar 

  24. Wang X L, Han W Q, Chen J, et al. Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2010, 2(5): 1548–1551

    Article  CAS  Google Scholar 

  25. Shen Z, Hu Y, Chen R, et al. Split Sn-Cu alloys on carbon nanofibers by one-step heat treatment for long-lifespan lithium-ion batteries. Electrochimica Acta, 2017, 225: 350–357

    Article  CAS  Google Scholar 

  26. Xing Y, Wang S, Fang B, et al. Three-dimensional nanoporous Cu6Sn5/Cu composite from dealloying as anode for lithium ion batteries. Microporous and Mesoporous Materials, 2018, 261: 237–243

    Article  CAS  Google Scholar 

  27. Watson V G, Haynes Z D, Telama W, et al. Electrochemical performance of heat treated SnO2-SnCu@C-Felt anode materials for lithium ion batteries. Surfaces and Interfaces, 2018, 13: 224–232

    Article  CAS  Google Scholar 

  28. Deng J, Lu Z, Chung C Y, et al. Electrochemical performance and kinetic behavior of lithium ion in Li4Ti5O12 thin film electrodes. Applied Surface Science, 2014, 314: 936–941

    Article  CAS  Google Scholar 

  29. Mao J, Zhou T, Zheng Y, et al. Two-dimensional nanostructures for sodium-ion battery anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(8): 3284–3303

    Article  CAS  Google Scholar 

  30. Huang B, Yang J, Li Y, et al. Carbon encapsulated Sn-Co alloy: A stabilized tin-based material for sodium storage. Materials Letters, 2018, 210: 321–324

    Article  CAS  Google Scholar 

  31. Chen W, Deng D. Carbonized common filter paper decorated with Sn@C nanospheres as additive-free electrodes for sodium-ion batteries. Carbon, 2015, 87: 70–77

    Article  CAS  Google Scholar 

  32. Gu H, Yang L, Zhang Y, et al. Highly reversible alloying/dealloying behavior of SnSb nanoparticles incorporated into N-rich porous carbon nanowires for ultra-stable Na storage. Energy Storage Materials, 2019, 21: 203–209

    Article  Google Scholar 

  33. Wang J W, Liu X H, Mao S X, et al. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Letters, 2012, 12(11): 5897–5902

    Article  CAS  Google Scholar 

  34. Qin J, Zhao N, Shi C, et al. Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(22): 10946–10956

    Article  CAS  Google Scholar 

  35. Liu J, Wen Y, van Aken P A, et al. Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Letters, 2014, 14(11): 6387–6392

    Article  CAS  Google Scholar 

  36. Zhang R, Wang Z, Ma W, et al. Improved sodium-ion storage properties by fabricating nanoporous CuSn alloy architecture. RSC Advances, 2017, 7(47): 29458–29463

    Article  CAS  Google Scholar 

  37. Kim I T, Allcorn E, Manthiram A. Cu6Sn5-TiC-C nanocomposite anodes for high-performance sodium-ion batteries. Journal of Power Sources, 2015, 281: 11–17

    Article  CAS  Google Scholar 

  38. Tang D, Huang Q, Yi R, et al. Room-temperature synthesis of mesoporous Sn/SnO2 composite as anode for sodium-ion batteries. European Journal of Inorganic Chemistry, 2016, (13–14): 1950–1954

    Article  CAS  Google Scholar 

  39. Cheng Y, Huang J, Li J, et al. Synergistic effect of the core—shell structured Sn/SnO2/C ternary anode system with the improved sodium storage performance. Journal of Power Sources, 2016, 324: 447–454

    Article  CAS  Google Scholar 

  40. Li J, Xu X, Luo Z, et al. Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochimica Acta, 2019, 304: 246–254

    Article  CAS  Google Scholar 

  41. Luo B, Qiu T, Ye D, et al. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy, 2016, 22: 232–240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51661009 and 51761007) and also supported by the Guangxi Natural Science Foundation (2019GXNSFDA245014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Liu or Jianqiu Deng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chen, T., Huang, F. et al. Double core—shell nanostructured Sn-Cu alloy as enhanced anode materials for lithium and sodium storage. Front. Mater. Sci. 14, 133–144 (2020). https://doi.org/10.1007/s11706-020-0500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0500-1

Keywords

Navigation