Skip to main content
Log in

One-step functionalization of graphene via Diels—Alder reaction for improvement of dispersibility

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Good dispersibility of graphene in a medium or matrix is a critical issue in practical applications. In this work, graphene was functionalized using N-(4-hydroxyl phenyl) maleimide (4-HPM) via the Diels—Alder (DA) reaction by a one-step catalyst-free approach. The optimal reaction condition was found to be 90 °C for 12 h using dimethylformamide (DMF) as the solvent. FTIR, Raman spectroscopy, XPS and EDS proved that 4-HPM moieties were successfully grafted onto the surface of graphene. UV-vis and TGA confirmed that the grafting amount of 4-HPM was 3.75%–3.97% based on the mass of graphene. Functionalized graphene showed excellent dispersion stability when dispersed in common solvents such as ethanol, DMF, water, tetrahydrofuran and p-xylene. Meanwhile, functionalized graphene also exhibited pH sensitivity in aqueous due to the phenolic hydroxyls from the 4-HPM moieties. As a result of good dispersion stability and pH sensitivity, compared with graphene, functionalized graphene had better adsorption capacity for methylene blue (MB) from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    Article  CAS  Google Scholar 

  2. Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nature Nanotechnology, 2008, 3(8): 491–495

    Article  CAS  Google Scholar 

  3. Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308

    Article  CAS  Google Scholar 

  4. Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388

    Article  CAS  Google Scholar 

  5. Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907

    Article  CAS  Google Scholar 

  6. Wu J B, Lin M L, Cong X, et al. Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 2018, 47(5): 1822–1873

    Article  CAS  Google Scholar 

  7. Kuila T, Mishra A K, Khanra P, et al. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 2013, 5(1): 52–71

    Article  CAS  Google Scholar 

  8. Zhu C, Liu T, Qian F, et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Letters, 2016, 16(6): 3448–3456

    Article  CAS  Google Scholar 

  9. Brownson D A C, Kampouris D K, Banks C E. An overview of graphene in energy production and storage applications. Journal of Power Sources, 2011, 196(11): 4873–4885

    Article  CAS  Google Scholar 

  10. Bai S, Shen X. Graphene-inorganic nanocomposites. RSC Advances, 2012, 2(1): 64–98

    Article  CAS  Google Scholar 

  11. Huang X, Qi X, Boey F, et al. Graphene-based composites. Chemical Society Reviews, 2012, 41(2): 666–686

    Article  CAS  Google Scholar 

  12. Liang Y, Wang H, Zhou J, et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. Journal of the American Chemical Society, 2012, 134(7): 3517–3523

    Article  CAS  Google Scholar 

  13. Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 2012, 41(2): 782–796

    Article  CAS  Google Scholar 

  14. Lee H, Choi T K, Lee Y B, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology, 2016, 11(6): 566–572

    Article  CAS  Google Scholar 

  15. Qiu X, Liu X, Zhang W, et al. Dynamic monitoring of microRNA-DNA hybridization using DNAase-triggered signal amplification. Analytical Chemistry, 2015, 87(12): 6303–6310

    Article  CAS  Google Scholar 

  16. Yan L, Zheng Y B, Zhao F, et al. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chemical Society Reviews, 2012, 41(1): 97–114

    Article  CAS  Google Scholar 

  17. Xu Y, Zhao L, Bai H, et al. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. Journal of the American Chemical Society, 2009, 131(37): 13490–13497

    Article  CAS  Google Scholar 

  18. Parviz D, Das S, Ahmed H S T, et al. Dispersions of noncovalently functionalized graphene with minimal stabilizer. ACS Nano, 2012, 6(10): 8857–8867

    Article  CAS  Google Scholar 

  19. Park S, An J, Piner R D, et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials, 2008, 20(21): 6592–6594

    Article  CAS  Google Scholar 

  20. Ayán-Varela M, Paredes J I, Guardia L, et al. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer. ACS Applied Materials & Interfaces, 2015, 7(19): 10293–10307

    Article  CAS  Google Scholar 

  21. Pei S, Wei Q, Huang K, et al. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, 2018, 9(1): 145

    Article  CAS  Google Scholar 

  22. Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339

    Article  CAS  Google Scholar 

  23. Robinson J T, Burgess J S, Junkermeier C E, et al. Properties of fluorinated graphene films. Nano Letters, 2010, 10(8): 3001–3005

    Article  CAS  Google Scholar 

  24. Nair R R, Ren W, Jalil R, et al. Fluorographene: a two-dimensional counterpart of Teflon. Small, 2010, 6(24): 2877–2884

    Article  CAS  Google Scholar 

  25. Lundstedt A, Papadakis R, Li H, et al. White-light photoassisted covalent functionalization of graphene using 2-propanol. Small Methods, 2017, 1(11): 1700214

    Article  CAS  Google Scholar 

  26. Lomeda J R, Doyle C D, Kosynkin D V, et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society, 2008, 130(48): 16201–16206

    Article  CAS  Google Scholar 

  27. Konios D, Stylianakis M M, Stratakis E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 2014, 430: 108–112

    Article  CAS  Google Scholar 

  28. Cao Y, Lai Z, Feng J, et al. Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers. Journal of Materials Chemistry, 2011, 21(25): 9271–9278

    Article  CAS  Google Scholar 

  29. Beck M T, Szépvölgyi J, Szabó P, et al. Heterogeneous Diels—Alder reaction between cyclopentadiene and different solid carbons. Carbon, 2001, 39(1): 147–149

    Article  CAS  Google Scholar 

  30. Zhu J, Hiltz J, Mezour M A, et al. Facile covalent modification of a highly ordered pyrolytic graphite surface via an inverse electron demand Diels—Alder reaction under ambient conditions. Chemistry of Materials, 2014, 26(17): 5058–5062

    Article  CAS  Google Scholar 

  31. Zydziak N, Hübner C, Bruns M, et al. One-step functionalization of single-walled carbon nanotubes (SWCNTs) with cyclopenta-dienyl-capped macromolecules via Diels—Alder chemistry. Macromolecules, 2011, 44(9): 3374–3380

    Article  CAS  Google Scholar 

  32. Le C M Q, Cao X T, Lim K T. Ultrasound-promoted direct functionalization of multi-walled carbon nanotubes in water via Diels—Alder “click chemistry”. Ultrasonics Sonochemistry, 2017, 39: 321–329

    Article  CAS  Google Scholar 

  33. Sarkar S, Bekyarova E, Haddon R C. Chemistry at the Dirac point: Diels—Alder reactivity of graphene. Accounts of Chemical Research, 2012, 45(4): 673–682

    Article  CAS  Google Scholar 

  34. Cao Y, Osuna S, Liang Y, et al. Diels—Alder reactions of graphene: computational predictions of products and sites of reaction. Journal of the American Chemical Society, 2013, 135(46): 17643–17649

    Article  CAS  Google Scholar 

  35. Denis P A. Diels—Alder reactions onto fluorinated and hydrogenated graphene. Chemical Physics Letters, 2017, 684: 79–85

    Article  CAS  Google Scholar 

  36. Yuan J, Chen G, Weng W, et al. One-step functionalization of graphene with cyclopentadienyl-capped macromolecules via Diels—Alder “click” chemistry. Journal of Materials Chemistry, 2012, 22(16): 7929–7936

    Article  CAS  Google Scholar 

  37. Liu J, Zeng X, Zhang X, et al. Synthesis and curing properties of a novel curing agent based on N-(4-hydroxyphenyl) maleimide and dicyclopentadiene moieties. Journal of Applied Polymer Science, 2011, 120(1): 56–61

    Article  CAS  Google Scholar 

  38. Sarkar S, Bekyarova E, Niyogi S, et al. Diels—Alder chemistry of graphite and graphene: graphene as diene and dienophile. Journal of the American Chemical Society, 2011, 133(10): 3324–3327

    Article  CAS  Google Scholar 

  39. Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401

    Article  CAS  Google Scholar 

  40. Wu J B, Lin M L, Cong X, et al. Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 2018, 47(5): 1822–1873

    Article  CAS  Google Scholar 

  41. Cledera-Castro M, Santos-Montes A, Izquierdo-Hornillos R, et al. Comparison of the performance of different reversed-phase columns for liquid chromatography separation of 11 pollutant phenols. Journal of Separation Science, 2007, 30(5): 699–707

    Article  CAS  Google Scholar 

  42. Zhang Y, Xu Y. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene. Advanced Functional Materials, 2019, 29(37): 1902171

    Article  CAS  Google Scholar 

  43. Seo J, Jeon I, Baek J. Mechanochemically driven solid-state Diels—Alder reaction of graphite into graphene nanoplatelets. Chemical Science, 2013, 4(11): 4273–4277

    Article  CAS  Google Scholar 

  44. Redelius P. Bitumen solubility model using Hansen solubility parameter. Energy & Fuels, 2004, 18(4): 1087–1092

    Article  CAS  Google Scholar 

  45. Jang B N, Wang D, Wilkie C A. Relationship between the solubility parameter of polymers and the clay dispersion in polymer/clay nanocomposites and the role of the surfactant. Macromolecules, 2005, 38(15): 6533–6543

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the National Natural Science Foundation of China (Grant No. 51573211) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qilin Gui or Xiaonong Chen.

Ethics declarations

Disclosure of potential conflicts of interest There is no conflict of interest to declare.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hu, K., Ouyang, Q. et al. One-step functionalization of graphene via Diels—Alder reaction for improvement of dispersibility. Front. Mater. Sci. 14, 198–210 (2020). https://doi.org/10.1007/s11706-020-0501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0501-0

Keywords

Navigation