Skip to main content
Log in

Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

A ternary single-walled carbon nanotubes/RuO2/polyindole (SWCNT/RuO2/PIn) nanocomposite was fabricated by the oxidation polymerization of indole on the prefabricated SWCNT/RuO2 binary nanocomposites. The nanocomposite was measured by FTIR, XRD, SEM, TEM, EDS and XPS, together with the electrochemical technique. The electrochemical results demonstrated that the symmetric supercapacitor used SWCNT/RuO2/PIn as electrodes presented 95% retention rate after 10000 cycles, superior capacitive performance of 1203 F·g−1 at 1 A·g−1, and high energy density of 33 W·h·kg−1 at 5000 W·kg−1. The high capacitance performance of SWCNT/RuO2/PIn nanocomposite was mainly ascribed to the beneficial cooperation effect among components. This indicated that the SWCNT/RuO2/PIn nanocomposite would be a good candidate for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009, 38(9): 2520–2531

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854

    Article  CAS  Google Scholar 

  3. Sellam, Hashmi S A. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes. ACS Applied Materials & Interfaces, 2013, 5(9): 3875–3883

    Article  CAS  Google Scholar 

  4. Liang A Q, Li D Q, Zhou W Q, et al. Robust flexible WS2/PEDOT:PSS film for use in high-performance miniature supercapacitors. Journal of Electroanalytical Chemistry, 2018, 824: 136–146

    Article  CAS  Google Scholar 

  5. Zhang L, Gu H, Sun H, et al. Molecular level one-step activation of agar to activated carbon for high performance supercapacitors. Carbon, 2018, 132: 573–579

    Article  CAS  Google Scholar 

  6. Kumar Y, Pandey G P, Hashmi S A. Gel polymer electrolyte based electrical double layer capacitors: comparative study with multi-walled carbon nanotubes and activated carbon electrodes. The Journal of Physical Chemistry C, 2012, 116(50): 26118–26127

    Article  CAS  Google Scholar 

  7. Barranco V, Lillo-Rodenas M A, Linares-Solano A, et al. Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. The Journal of Physical Chemistry C, 2010, 114(22): 10302–10307

    Article  CAS  Google Scholar 

  8. Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Letters, 2008, 8(10): 3498–3502

    Article  CAS  Google Scholar 

  9. Biswas S, Drzal L T. Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance. ACS Applied Materials & Interfaces, 2010, 2(8): 2293–2300

    Article  CAS  Google Scholar 

  10. Zhou W Q, Ma X M, Jiang F X, et al. Electrochemical fabrication of a porous network MnO2/poly(5-cyanoindole) composite and its capacitance performance. Electrochimica Acta, 2014, 138: 270–277

    Article  CAS  Google Scholar 

  11. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828

    Article  CAS  Google Scholar 

  12. Hou Y, Cheng Y, Hobson T, et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Letters, 2010, 10(7): 2727–2733

    Article  CAS  Google Scholar 

  13. Lv P, Feng Y Y, Li Y, et al. Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for supercapacitors. Journal of Power Sources, 2012, 220: 160–168

    Article  CAS  Google Scholar 

  14. Wang J G, Yang Y, Huang Z H, et al. Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors. Journal of Materials Chemistry, 2012, 22(33): 16943–16949

    Article  CAS  Google Scholar 

  15. Li P, Yang Y, Shi E, et al. Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Applied Materials & Interfaces, 2014, 6(7): 5228–5234

    Article  CAS  Google Scholar 

  16. Li Q, Liu J, Zou J, et al. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. Journal of Power Sources, 2011, 196(1): 565–572

    Article  CAS  Google Scholar 

  17. Zhou W Q, Xu J K. Progress in conjugated polyindoles: synthesis, polymerization mechanisms, properties, and applications. Polymer Reviews, 2017, 57(2): 248–275

    Article  CAS  Google Scholar 

  18. Zhou Q J, Zhu D H, Ma X M, et al. High-performance capacitive behavior of layered reduced graphene oxide and polyindole nanocomposite materials. RSC Advances, 2016, 6(35): 29840–29847

    Article  CAS  Google Scholar 

  19. Zhang F, Yuan C, Zhu J, et al. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Advanced Functional Materials, 2013, 23(31): 3909–3915

    Article  CAS  Google Scholar 

  20. Tebyetekerwa M, Wang X, Wu Y, et al. Controlled synergistic strategy to fabricate 3D-skeletal hetero-nanosponges with high performance for flexible energy storage applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(40): 21114–21121

    Article  CAS  Google Scholar 

  21. Tebyetekerwa M, Yang S, Peng S, et al. Unveiling polyindole: freestanding as-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors. Electrochimica Acta, 2017, 247: 400–409

    Article  CAS  Google Scholar 

  22. Wang W, Wu S. A new ternary composite based on carbon nanotubes/polyindole/graphene with preeminent electrocapacitive performance for supercapacitors. Applied Surface Science, 2017, 396: 1360–1367

    Article  CAS  Google Scholar 

  23. Zhou Q, Zhu D, Ma X, et al. PEDOT:PSS-assisted polyindole hollow nanospheres modified carbon cloth as high performance electrochemical capacitor electrodes. Electrochimica Acta, 2016, 212: 662–670

    Article  CAS  Google Scholar 

  24. Majumder M, Choudhary R B, Koiry S P, et al. Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS2 hybrid electrode material for supercapacitor applications. Electrochimica Acta, 2017, 248: 98–111

    Article  CAS  Google Scholar 

  25. Zhou X, Chen Q, Wang A, et al. Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(6): 3776–3783

    Article  CAS  Google Scholar 

  26. Zhou X, Wang A Q, Pan Y M, et al. Facile synthesis of a Co3O4@carbon nanotubes/polyindole composite and its application in all-solid-state flexible supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(24): 13011–13015

    Article  CAS  Google Scholar 

  27. Raj R P, Ragupathy P, Mohan S. Remarkable capacitive behavior of a Co3O4-polyindole composite as electrode material for supercapacitor applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(48): 24338–24348

    Article  CAS  Google Scholar 

  28. Chang Y N, Zhou W Q, Wu J, et al. High-performance flexible-film supercapacitors of layered hydrous RuO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) through vacuum filtration. Electrochimica Acta, 2018, 283: 744–754

    Article  CAS  Google Scholar 

  29. Deshmukh P R, Bulakhe R N, Pusawale S N, et al. Polyaniline-RuO2 composite for high performance supercapacitors: chemical synthesis and properties. RSC Advances, 2015, 5(36): 28687–28695

    Article  CAS  Google Scholar 

  30. Zheng W, Cheng Q M, Wang D W, et al. High-performance solidstate on-chip supercapacitors based on Si nanowires coated with ruthenium oxide via atomic layer deposition. Journal of Power Sources, 2017, 341: 1–10

    Article  CAS  Google Scholar 

  31. Wu Z S, Wang D W, Ren W, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Advanced Functional Materials, 2010, 20(20): 3595–3602

    Article  CAS  Google Scholar 

  32. Wang W, Guo S, Lee I, et al. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Scientific Reports, 2014, 4(1): 4452

    Article  CAS  Google Scholar 

  33. Cho S, Kim M, Jang J. Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Applied Materials & Interfaces, 2015, 7(19): 10213–10227

    Article  CAS  Google Scholar 

  34. Yu Z, Tetard L, Zhai L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730

    Article  CAS  Google Scholar 

  35. Li C, Chen Y H, Wang Y B, et al. A fullerene-single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. Journal of Materials Chemistry, 2007, 17(23): 2406–2411

    Article  CAS  Google Scholar 

  36. Mink J, Kristof J, Battisti A D, et al. Investigation on the formation of RuO2-based mixed-oxide coatings by spectroscopic methods. Surface Science, 1995, 335(1–3): 252–257

    Article  CAS  Google Scholar 

  37. Ma X M, Zhou W Q, Mo D Z, et al. One-step template-free electrodeposition of novel poly (indole-7-carboxylic acid) nanowires and their high capacitance properties. RSC Advances, 2015, 5(5): 3215–3223

    Article  CAS  Google Scholar 

  38. Kim Y T, Tadai K, Mitani T. Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. Journal of Materials Chemistry, 2005, 15(46): 4914–4921

    Article  CAS  Google Scholar 

  39. Zhang W D, Xu B, Jiang L C. Functional hybrid materials based on carbon nanotubes and metal oxides. Journal of Materials Chemistry, 2010, 20(31): 6383–6391

    Article  CAS  Google Scholar 

  40. Zhi M, Xiang C, Li J, et al. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 2013, 5(1): 72–88

    Article  CAS  Google Scholar 

  41. Wang K, Meng Q H, Zhang Y J, et al. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Advanced Materials, 2013, 25(10): 1494–1498

    Article  CAS  Google Scholar 

  42. Wang W J, Lei W, Yao T Y, et al. One-pot synthesis of graphene/SnO2/PEDOT ternary electrode material for supercapacitors. Electrochimica Acta, 2013, 108: 118–126

    Article  CAS  Google Scholar 

  43. Jin Y H, Jia M Q. Design and synthesis of nanostructured graphene-SnO2-polyaniline ternary composite and their excellent supercapacitor performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464: 17–25

    Article  CAS  Google Scholar 

  44. Eeu Y C, Lim H N, Lim Y S, et al. Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material. Journal of Nanomaterials, 2013, 2013: 653890 (6 pages)

    Article  CAS  Google Scholar 

  45. Yan D, Liu Y, Li Y H, et al. Synthesis and electrochemical properties of MnO2/rGO/PEDOT:PSS ternary composite electrode material for supercapacitors. Materials Letters, 2014, 127: 53–55

    Article  CAS  Google Scholar 

  46. Wang G X, Tang Q Q, Bao H, et al. Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. Journal of Power Sources, 2013, 241: 231–238

    Article  CAS  Google Scholar 

  47. Singu B S, Male U, Srinivasan P, et al. Preparation and performance of polyaniline-multiwall carbon nanotubes-titanium dioxide ternary composite electrode material for supercapacitors. Journal of Industrial and Engineering Chemistry, 2017, 49: 82–87

    Article  CAS  Google Scholar 

  48. Zhang J T, Jiang J W, Li H L, et al. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy & Environmental Science, 2011, 4(10): 4009–4015

    Article  CAS  Google Scholar 

  49. Peng Z, Liu X, Meng H, et al. Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2017, 9(5): 4577–4586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51862011 and 51662012), the Jiangxi Outstanding Young Talent Fund Projects (20171BCB23076), the Natural Science Foundation of Jiangxi Province (20171BAB206013), and the Young Top-Notch Talent of Jiangxi Science and Technology Normal University (2016QNBJRC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiqiang Zhou or Jingkun Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Zhou, Q., Liang, A. et al. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors. Front. Mater. Sci. 14, 109–119 (2020). https://doi.org/10.1007/s11706-020-0497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0497-5

Keywords

Navigation