Skip to main content
Log in

Experimental and Numerical Characterization of a Liquid Jet Injected into Air Crossflow with Acoustic Forcing

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The current work presents a study on spray dynamics in aeronautical injectors. More particularly, the experimental characterization of a liquid jet in an oscillating gaseous cross flow (LJIOGCF) atomization is presented and compared to numerical simulations. The experimental setup consists of a water jet transversally injected into an oscillating subsonic air flow at ambient conditions. In a first step, a cross-comparison is performed in order to validate the numerical model and the tools used to quantitatively analyze the experimental data in the case of steady air flows. In a second step, the air flow is submitted to longitudinal acoustic waves using a pneumatic loudspeaker. A detailed database, representative of the actual dynamics of LJIOGCF configurations, is obtained using both experiments and numerical simulations. Visualizations with a back lighting approach are employed to characterize the liquid jet close to the injection location while phase doppler anemometry is used to determine the characteristics of the crossflow and the spray in terms of droplet size, velocity and concentration. Phase-averaging is performed to characterize the response of the liquid jet, the air velocity field and the spray oscillations during the excitation cycle. The numerical simulation relies on a multi-scale large eddy simulation approach. This method couples a multi-fluid solver for the liquid jet main body with a dispersed phase solver for the atomized spray. The acoustic perturbation is imposed as a fluctuating air inflow condition. The experimental results show that the acoustic forcing induces a flapping motion of the liquid jet. As a consequence, velocity and concentration waves travelling downstream the liquid jet appear. Coupling phenomena between the crossflow, the atomization of the liquid jet and the transport of droplets are observed, revealing different wave transport velocities. It further appears that spray dynamics are both driven by liquid column and crossflow oscillations. The numerical simulation is able to capture the global flapping dynamics of the liquid jet’s main body. More quantitative comparisons show a very good agreement between simulation and experiments regarding the jet trajectories over the entire excitation cycle. Numerical droplet average velocities are also in good agreement with experiments. Finally, the numerical simulation partly reproduces the coupling between acoustics and spray dynamics observed in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

LJIGCF:

Liquid jet in gaseous crossflow (–)

\(U_{0}\) :

Gas average velocity at the jet location (m s−1)

\(U_{l}\) :

Liquid mean velocity at the jet location (m s−1)

\(d_{j}\) :

Jet diameter (m)

Lc :

Duct length from jet to outlet (m)

Wc :

Duct width from jet to outlet (m)

\(\sigma\) :

Surface tension coefficient (N m−1)

\(\rho_{g} ,\rho_{l}\) :

Gas and liquid densities (kg m−3)

\(\mu_{g} ,\mu_{l}\) :

Gas and liquid viscosities (Pa s)

\(\alpha_{L}\) :

Liquid volume fraction (–)

\({\text{We}}_{j} = \rho_{g} \left( {U_{0} } \right)^{2} d_{j} /\sigma\) :

Crossflow Weber number (–)

\(\text{Re}_{j} = \rho_{g} U_{0} d_{j} /\mu_{g}\) :

Gaseous crossflow Reynolds number (–)

\({\text{Re}}_{l} = \rho_{l} U_{l} d_{j} /\mu_{l}\) :

Liquid jet Reynolds number (–)

\(q = \rho_{l} U_{l}^{2} /\rho_{g} U_{0}^{2}\) :

Momentum flux ratio (–)

References

  • Anderson, T.J., Proscia, W., Cohen, J.M.: Modulation of a liquid-fuel jet in an unsteady cross-flow. In: Proceedings of ASME Turbo Expo 2001, New Orleans, Louisiana, p. V002T02A015 (2001)

  • Apeloig, J.M., d’Herbigny, F.-X., Simon, F., Gajan, P., Orain, M., Roux, S.: Liquid-fuel behavior in an aeronautical injector submitted to thermoacoustic instabilities. J. Propul. Power 31, 309–319 (2015)

    Article  Google Scholar 

  • Blanchard, G., Zuzio, D., Villedieu, P.: A large scale multi-fluid/dispersed phase approach for spray generation in aeronautical fuel injectors. In: ICMF 2016, Florence, Italy (2016)

  • Bodoc, V., Desclaux, A., Gajan, P., Simon, F., Illac, G.: Characterization of confined liquid jet injected into oscillating air crossflow. Flow Turbul. Combust. 104, 1–18 (2020)

    Article  Google Scholar 

  • Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  Google Scholar 

  • Broumand, M., Birouk, M.: Liquid jet in a subsonic gaseous crossflow: recent progress and remaining challenges. Prog. Energy Combust. Sci. 57, 1–29 (2016)

    Article  Google Scholar 

  • Candel, S., Durox, D., Schuller, T., Palies, P., Bourgouin, J.-F., Moeck, J.P.: Progress and challenges in swirling flame dynamics. C. R. Mec. 340, 758–768 (2012)

    Article  Google Scholar 

  • Dorey, L.-H.: Modelling of Combustion, Soot Formation and Radiative Transfer Coupled Phenomena in Gas Turbine Combustion Chambers. Ph.D. Thesis, Ecole Centrale Paris (2012)

  • Dutoya, D., Matuszewski, L.: Thermodynamics in CEDRE. AerospaceLab, pp. 1–11 (2011)

  • Eckstein, J., Freitag, E., Hirsch, C., Sattelmayer, T.: Experimental study on the role of entropy waves in low-frequency oscillations in a RQL combustor. J. Eng. Gas Turbines Power 128, 264–270 (2006)

    Article  Google Scholar 

  • Felden, A., Esclapez, L., Riber, E., Cuenot, B., Wang, H.: Including real fuel chemistry in LES of turbulent spray combustion. Combust. Flame 193, 397–416 (2018)

    Article  Google Scholar 

  • Haider, F., Brenner, P., Courbet, B., Croisille, J.-P.: Parallel implementation of k-exact finite volume reconstruction on unstructured grids. In: Dans, L.L. (ed.) High Order Nonlinear Numerical Schemes for Evolutionary PDEs, pp. 59–75. Springer, Cham (2014)

    Chapter  Google Scholar 

  • Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Springer, Berlin (2012)

    MATH  Google Scholar 

  • Harlow, F.H.: The Particle-in-Cell Method for Numerical Solution of Problems in Fluid Dynamics. Technical report, Los Alamos Scientific Lab., New Mexico (1962)

  • Herrmann, M.: Detailed numerical simulations of the primary atomization of a turbulent liquid jet in crossflow. ASME. J. Eng. Gas Turbines Power. 132(6), 061506 (2010). https://doi.org/10.1115/1.4000148

    Article  Google Scholar 

  • Hervo, L., Senoner, J.M., Biancherin, A., Cuenot, B.: Large-eddy simulation of kerosene spray ignition in a simplified aeronautic combustor. Flow Turbul. Combust. 101, 603–625 (2018)

    Article  Google Scholar 

  • Laurendeau, F., Léon, O., Chedevergne, F., Senoner, J.-M., Casalis, G.: Particle image velocimetry experiment analysis using large-eddy simulation: application to plasma actuators. AIAA J. 55(11), 3767–3780 (2017)

    Article  Google Scholar 

  • Mashayek, A., Ashgriz, N.: Atomization of a liquid jet in crossflow. In: Dans, L.L. (ed.) Handbook of Atomization and Sprays. Springer, Berlin (2011)

    Google Scholar 

  • Neophytou, A., Mastorakos, E., Cant, R.S.: DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame 157, 1071–1086 (2010)

    Article  Google Scholar 

  • No, S.-Y.: A review on empirical correlations for jet/spray trajectory of liquid jet in uniform cross flow. Int. J. Spray Combust. Dyn. 7, 283–313 (2015)

    Article  Google Scholar 

  • Owkes, M., Desjardins, O.: A mass and momentum conserving unsplit semi-Lagrangian framework for simulating multiphase flows. J. Comput. Phys. 332, 21–46 (2017)

    Article  MathSciNet  Google Scholar 

  • Putnam, A.A., Dennis, W.R.: Survey of organ-pipe oscillations in combustion systems. J. Acoust. Soc. Am. 28, 246–259 (1956)

    Article  Google Scholar 

  • Refloch, A., Courbet, B., Murrone, A., Villedieu, P., Laurent, C., Gilbank, P., et al.: CEDRE Software. AerospaceLab, pp. 1–10 (2011)

  • Rutard, N., Dorey, L.-H., Le Touze, C., Ducruix, S.: Large-eddy simulation of an air-assisted liquid jet under a high-frequency transverse acoustic forcing. Int. J. Multiph. Flow 122, 103144 (2020)

    Article  MathSciNet  Google Scholar 

  • Sallam, K.A., Aalburg, C., Faeth, G.M.: Breakup of round nonturbulent liquid jets in gaseous crossflow. AIAA J. 13, 64–73 (2013)

    Google Scholar 

  • Sanjosé, M., Senoner, J.M., Jaegle, F., Cuenot, B., Moreau, S., Poinsot, T.: Fuel injection model for Euler–Euler and Euler–Lagrange large-eddy simulations of an evaporating spray inside an aeronautical combustor. Int. J. Multiph. Flow 37, 514–529 (2011)

    Article  Google Scholar 

  • Schiller, L., Naumann, Z.: A drag coefficient correlation. Z. Vereines Dtsch. Ing. 77, 323 (1935)

    Google Scholar 

  • Senoner, J.M., Sanjosé, M., Lederlin, T., Jaegle, F., García, M., Riber, E., et al.: Eulerian and Lagrangian large-eddy simulations of an evaporating two-phase flow. C. R. Méc. 337, 458–468 (2009)

    Article  Google Scholar 

  • Sharma, A., Lee, J.G.: Dynamics of near-field and far-field spray formed by liquid jet in oscillating crossflow. At. Sprays 28, 1–21 (2018)

    Article  Google Scholar 

  • Song, J., Ramasubramanian, C., Lee, J.G.: Response of liquid jet to modulated crossflow. In: Proceedings of ASME Turbo Expo 2013, p. V01BT04A055 (2013)

  • Strutt, J.W., Rayleigh, B.: The theory of sound. Dover, New York (1945)

    MATH  Google Scholar 

  • Thuillet, S.: Simulation multi-échelle de l’atomisation d’un jet liquide sous l’effet d’un écoulement gazeux transverse en présence d’une perturbation acoustique. Ph.D. Thesis, Institut Supérieur de L’Aéronautique et de L’Espace (ISAE) (2018) (in French)

  • Wilcox, D.C.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26, 1299–1310 (1988)

    Article  MathSciNet  Google Scholar 

  • Williams, F.A.: Spray combustion and atomization. Phys Fluids 1(6), 541–545 (1958)

    Article  Google Scholar 

  • Wu, P.-K., Kirkendall, K.A., Fuller, R.P., Nejad, A.S.: Breakup processes of liquid jets in subsonic crossflows. J. Propul. Power 31, 309–319 (1997)

    Google Scholar 

  • Xiao, F., Dianat, M., McGuirk, J.J.: A robust interface method for drop formation and breakup simulation at high density ratio using an extrapolated liquid velocity. Comput. Fluids 136, 402–420 (2016)

    Article  MathSciNet  Google Scholar 

  • Zuzio, D., Orazzo, A., Estivalezes, J.L., Lagrange, I.: A new efficient momentum preserving level-set/VOF method for high density and momentum ratio incompressible two-phase flows. J Comput Phys 410, 109342 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was performed within ONERA’s internal research project SIGMA on combustion instabilities. The authors would like to warmly thank all the people who helped perform the experimental test campaigns. The Direction Générale de l’Armement (DGA), the French Government Defense procurement and technology agency, is gratefully acknowledged for its financial support of the Ph.D. thesis of Swann Thuillet.

Funding

Partial funding of the Direction Générale de l’Armement (DGA), the French Government Defense procurement and technology agency, for the Ph.D. thesis of Swann Thuillet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Desclaux.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desclaux, A., Thuillet, S., Zuzio, D. et al. Experimental and Numerical Characterization of a Liquid Jet Injected into Air Crossflow with Acoustic Forcing. Flow Turbulence Combust 105, 1087–1117 (2020). https://doi.org/10.1007/s10494-020-00126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00126-0

Keywords

Navigation