Skip to main content
Log in

Elaboration of extra-virgin olive oils rich in oleocanthal and oleacein: pilot plant’s proposal

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Extra-virgin olive oil is basically used in food, but it can also be used as a source of high added-value components, such as oleocanthal and oleacein. Oleocanthal and oleacein are bioactive compounds with proven activities in the treatment of various diseases. By applying response surface methodology, oils of the Arbequina, Arbosana, and Koroneiki cultivars of super-intensive olive trees have been elaborated, under both irrigation and rainfed conditions. 289 oils have been obtained and 13 parameters per oil determined, which have been grouped into 221 models, that determine extraction performance, quality, and minor components of oils. The maximum extractable olive oil with the current technology is 89.0 ± 3.9%, with the rest remaining in the pomace. Oleacein is the component that most influences the antioxidant capacity of oils; its activity is 5.85 ± 0.33 µmol Trolox/mg. Irrigated Arbequina produces very aromatic oils. Rainfed Arbequina produces less aromatic (18.5 mg/kg of volatile) but with a higher content of phenolic compounds (514.4 mg/kg) oils. Koroneiki produces oils with a very high content of phenolic compounds but low in volatiles. For Koroneiki, the factors that maximize phenolic compounds are: rainfed crops, mill with 4.5 mm sieve, and malaxation at 40 °C for 30 min (1307.2 mg/kg of phenolic compounds, witch 500.0 mg/kg of oleacein, and 174.3 mg/kg of oleocanthal). A method to extract oleocanthal and oleacein from olive oils is proposed, as a way to develop new strategies to improve their functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Presti G, Guarrasi V, Gulotta E, Provenzano F, Provenzano A, Giuliano S, Monfreda M, Mangione M, Passantino R, San Biagio P, Costa M, Giacomazza D (2017) Bioactive compounds from extra virgin olive oils: correlation between phenolic content and oxidative stress cell protection. Biophys Chem 230:109–116. https://doi.org/10.1016/j.bpc.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  2. Lopes de Souza A, Marcadenti A, Portal V (2017) Effects of olive oil phenolic compounds on inflammation in the prevention and treatment of coronary artery disease. Nutrients 9(10):1087. https://doi.org/10.3390/nu9101087

    Article  CAS  Google Scholar 

  3. Batarseh YS, Kaddoumi A (2018) Oleocanthal-rich extra-virgin olive oil enhances donepezil effect by reducing amyloid-β load and related toxicity in a mouse model of Alzheimer’s disease. J Nutr Biochem 55:113–123. https://doi.org/10.1016/j.jnutbio.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  4. Scotece M, Conde J, Abella V, Lopez V, Pino J, Lago F, Smith AB, Gómez-Reino JJ, Gualillo O (2015) New drugs from ancient natural foods. Oleocanthal, the natural occurring spicy compound of olive oil: a brief history. Drug Discov Today 20:406–410. https://doi.org/10.1016/j.drudis.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  5. Agrawal K, Melliou E, Li X, Pedersen TL, Wang SC, Magiatis P, Newman JW, Holt RR (2017) Oleocanthal-rich extra virgin olive oil demonstrates acute anti-platelet effects in healthy men in a randomized trial. J Funct Foods 36:84–93. https://doi.org/10.1016/j.jff.2017.06.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Filipek A, Czerwińska ME, Kiss AK, Polański JA, Naruszewicz M (2017) Oleacein may inhibit destabilization of carotid plaques from hypertensive patients. Impact on high mobility group protein-1. Phytomedicine 32:68–73. https://doi.org/10.1016/j.phymed.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  7. Filipek A, Czerwińska ME, Kiss AK, Wrzosek M, Naruszewicz M (2015) Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression. Phytomedicine 22:1255–1261. https://doi.org/10.1016/j.phymed.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  8. Valli M, Peviani EG, Porta A, D'Alfonso A, Zanoni G, Vidari G (2013) A concise and efficient total synthesis of oleocanthal. Eur J Org Chem 2013:4332–4336. https://doi.org/10.1002/ejoc.201300324

    Article  CAS  Google Scholar 

  9. Costanzo P, Bonacci S, Cariati L, Nardi M, Oliverio M, Procopio A (2018) Simple and efficient sustainable semi-synthesis of oleacein [2-(3,4-hydroxyphenyl) ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate] as potential additive for edible oils. Food Chem 245:410–414. https://doi.org/10.1016/j.foodchem.2017.10.097

    Article  CAS  PubMed  Google Scholar 

  10. Adhami H, Zehl M, Dangl C, Dorfmeister D, Stadler M, Urban E, Hewitson P, Ignatova S, Krenn L (2015) Preparative isolation of oleocanthal, tyrosol, and hydroxytyrosol from olive oil by HPCCC. Food Chem 170:154–159. https://doi.org/10.1016/j.foodchem.2014.08.079

    Article  CAS  PubMed  Google Scholar 

  11. Angelis A, Hamzaoui M, Aligiannis N, Nikou T, Michailidis D, Gerolimatos P, Termentzi A, Hubert J, Halabalaki M, Renault J, Skaltsounis A (2017) An integrated process for the recovery of high added-value compounds from olive oil using solid support free liquid-liquid extraction and chromatography techniques. J Chromatogr A 1491:126–136. https://doi.org/10.1016/j.chroma.2017.02.046

    Article  CAS  PubMed  Google Scholar 

  12. Espínola F, Moya M, Fernández DG, Castro E (2009) Improved extraction of virgin olive oil using calcium carbonate as coadjuvant extractant. J Food Eng 92:112–118. https://doi.org/10.1016/j.jfoodeng.2008.10.038

    Article  CAS  Google Scholar 

  13. Espínola F, Moya M, Fernández DG, Castro E (2011) Modelling of virgin olive oil extraction using response surface methodology. Int J Food Sci Tech 46:2576–2583. https://doi.org/10.1111/j.1365-2621.2011.02786.x

    Article  CAS  Google Scholar 

  14. European Commission Regulation (1991) Characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. EEC 2568/91, L248:1–83. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01991R2568-20161204&from=FI

  15. International Olive Council (2017) Determination of biophenols in olive oils by HPLC. COI/T.20/Doc. No 29. https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.20-Doc.-No-29-Rev-1-2017.pdf

  16. Vidal AM, Alcalá S, de Torres A, Moya M, Espínola F (2018) Industrial production of a balanced virgin olive oil. LWT Food Sci Technol 97:588–596. https://doi.org/10.1016/j.lwt.2018.07.054

    Article  CAS  Google Scholar 

  17. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. https://doi.org/10.1016/j.aca.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  18. Ben Brahim S, Marrakchi F, Gargouri B, Bouaziz M (2015) Optimization of malaxing conditions using CaCO3 as a coadjuvant: a method to increase yield and quality of extra virgin olive oil cv. Chemlali LWT-Food Sci Technol 63:243–252. https://doi.org/10.1016/j.lwt.2015.03.013

    Article  CAS  Google Scholar 

  19. Squeo G, Silletti R, Summo C, Paradiso VM, Pasqualone A, Caponio F (2016) Influence of calcium carbonate on extraction yield and quality of extra virgin oil from olive (Olea europaea L. cv. Coratina). Food Chem 209:65–71. https://doi.org/10.1016/j.foodchem.2016.04.028

    Article  CAS  PubMed  Google Scholar 

  20. Tamborrino A, Squeo G, Leone A, Paradiso VM, Romaniello R, Summo C, Pasqualone A, Catalano P, Bianchi B, Caponio F (2017) Industrial trials on coadjuvants in olive oil extraction process: Effect on rheological properties, energy consumption, oil yield and olive oil characteristics. J Food Eng 205:34–46. https://doi.org/10.1016/j.jfoodeng.2017.02.019

    Article  CAS  Google Scholar 

  21. Moya M, Alcalá S, Ocaña MT, Vidal A, Espínola F (2018) Oil mill coadjuvants: aggregation due to moisture and action on olive-pomace oils. J Food Eng 236:51–59. https://doi.org/10.1016/j.jfoodeng.2018.05.013

    Article  CAS  Google Scholar 

  22. Clodoveo ML (2019) Industrial ultrasound applications in the extra-virgin olive oil extraction process: history, approaches, and key questions. Foods 8:121. https://doi.org/10.3390/foods8040121

    Article  CAS  PubMed Central  Google Scholar 

  23. Amirante R, Clodoveo ML (2017) Developments in the design and construction of continuous full-scale ultrasonic devices for the EVOO industry. Eur J Lipid Sci Technol 119:1600438. https://doi.org/10.1002/ejlt.201600438

    Article  CAS  Google Scholar 

  24. Andreou V, Dimopoulos G, Alexandrakis Z, Katsaros G, Oikonomou D, Toepfl S, Heinz V, Taoukis P (2017) Shelf-life evaluation of virgin olive oil extracted from olives subjected to nonthermal pretreatments for yield increase. Innov Food Sci Emerg 40:52–57. https://doi.org/10.1016/j.ifset.2016.09.009

    Article  CAS  Google Scholar 

  25. Miho H, Díez CM, Mena-Bravo A, Sánchez de Medina V, Moral J, Melliou E, Magiatis P, Rallo L, Barranco D, Priego-Capote F (2018) Cultivar influence on variability in olive oil phenolic profiles determined through an extensive germplasm survey. Food Chem 266:192–199. https://doi.org/10.1016/j.foodchem.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  26. Servili M, Sordini B, Esposto S, Urbani S, Veneziani G, Di Maio I, Selvaggini R, Taticchi A (2013) Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 3:1–23. https://doi.org/10.3390/antiox3010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. European Commission Regulation (2012) List of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. EU 432/2012, L136:1–40. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0432&from=EN

  28. Motilva MJ, Tovar MJ, Romero MP, Alegre S, Girona J (2000) Influence of regulated deficit irrigation strategies applied to olive trees (Arbequina cultivar) on oil yield and oil composition during the fruit ripening period. J Sci Food Agric 80:2037–2043. https://doi.org/10.1002/1097-0010(200011)80:14%3c2037:AID-JSFA733%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  29. García JM, Morales-Sillero A, Pérez-Rubio AG, Diaz-Espejo A, Montero A, Fernández JE (2017) Virgin olive oil quality of hedgerow ‘Arbequina’ olive trees under deficit irrigation. J Sci Food Agric 97:1018–1026. https://doi.org/10.1002/jsfa.7828

    Article  CAS  PubMed  Google Scholar 

  30. Bilušić T, Žanetić M, Ljubenkov I, Mekinić IG, Štambuk S, Bojović V, Soldo B, Magiatis P (2018) Molecular characterization of Dalmatian cultivars and the influence of the olive fruit harvest period on chemical profile, sensory characteristics and oil oxidative stability. Eur Food Res Technol 244:281–289. https://doi.org/10.1007/s00217-017-2954-7

    Article  CAS  Google Scholar 

  31. de Torres A, Espínola F, Moya M, Castro E (2016) Composition of secoiridoid derivatives from Picual virgin olive oil using response surface methodology with regard to malaxation conditions, fruit ripening, and irrigation management. Eur Food Res Technol 242:1709–1718. https://doi.org/10.1007/s00217-016-2670-8

    Article  CAS  Google Scholar 

  32. Ramos-Escudero F, Morales MT, Asuero AG (2015) Characterization of bioactive compounds from monovarietal virgin olive oils: relationship between phenolic compounds-antioxidant capacities. Int J Food Prop 18:348–358. https://doi.org/10.1080/10942912.2013.809542

    Article  CAS  Google Scholar 

  33. Czerwińska M, Kiss AK, Naruszewicz M (2012) A comparison of antioxidant activities of oleuropein and its dialdehydic derivative from olive oil, oleacein. Food Chem 131:940–947. https://doi.org/10.1016/j.foodchem.2011.09.082

    Article  CAS  Google Scholar 

  34. Vidal AM, Alcalá S, Ocaña MT, De Torres A, Espínola F, Moya M (2018) Modeling of volatile and phenolic compounds and optimization of the process conditions for obtaining balanced extra virgin olive oils. Grasas Aceites 69(2):e250. https://doi.org/10.3989/gya.1220172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Economy, Innovation, and Science of the Andalusian Regional Government, for the financial help provided through Research Project of Excellence PI11-AGR-7726. The authors would also like to acknowledge Todolivo S.L. and all their staff for their kindness and attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Moya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, A.M., Alcalá, S., Ocaña, M.T. et al. Elaboration of extra-virgin olive oils rich in oleocanthal and oleacein: pilot plant’s proposal. Eur Food Res Technol 246, 1459–1468 (2020). https://doi.org/10.1007/s00217-020-03503-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03503-1

Keywords

Navigation