Skip to main content

Advertisement

Log in

Immunohistochemical Analysis of the Metabolic Phenotype of Adrenal Cortical Carcinoma

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Metabolic reprogramming is a cellular process contributing to carcinogenesis. However, it remains poorly understood in adrenal cortical carcinoma (ACC), an aggressive malignancy with overall poor prognosis and limited therapeutic options. We characterized the metabolic phenotype of ACC, by examining the immunoprofile of key proteins involved in glucose metabolism, hexokinase (HK1), pyruvate kinase (PKM1, PKM2), succinate dehydrogenase (SDHB), and phospho-S6 ribosomal protein (pS6), in a tissue microarray of 137 adrenal cortical tissue samples. Protein expression was compared between ACC (n = 42), adrenal cortical adenoma (ACA; n = 50), and normal adrenal cortical tissue samples (n = 45). Cytoplasmic expression of HK1 and PKM2 was significantly higher in ACC than in ACA (p < 0.001 and p = 0.014, respectively) or normal adrenal cortical tissue samples (p < 0.001 and p < 0.001, respectively). Expression of HK1 and PKM2 was also higher in ACA than in normal adrenal cortical tissue samples (p < 0.001 and p < 0.001, respectively). PKM1 expression was overall low in ACC, ACA, and normal samples, although expression of PKM1 was higher in ACC than in ACA (p = 0.027). There was no loss of cytoplasmic granular SDHB expression in our cohort of adrenal cortical tumors, and cytoplasmic expression of pS6 was lower in ACC than in ACA (p = 0.003) or normal adrenal cortical tissue samples (p = 0.008). Significantly, HK1 expression correlated with pyruvate kinase isoform (PKM2 and PKM1) expression (p < 0.001 and p = 0.007, respectively). Although functional validation was not performed, this study provides further evidence that metabolic reprogramming and altered glucose metabolism may occur in a subset of ACC through overexpression of intracellular glycolytic enzymes, notably HK1 and PKM2. The possibility of utilizing the reprogrammed glucose metabolism in ACC for novel therapeutic strategies should be explored in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Duan K, Giordano TJ, Mete O (2016) Adrenal cortical proliferations. In: Mete O, Asa SL, eds. Endocrine Pathology. UK: Cambridge University Press; 602–627.

  2. Zheng S, Cherniack AD, Dewal N, et al (2016) Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell 29:723–736

    Article  CAS  Google Scholar 

  3. Libè R, Fratticci A, Bertherat J (2007) Adrenocortical cancer: pathophysiology and clinical management. Endocr Relat Cancer 14:13–28

    Article  Google Scholar 

  4. Giordano TJ, Kuick R, Else T, Gauger PG, Vinco M, Bauersfeld J, Sanders D, Thomas DG, Doherty G, Hammer G (2009) Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin Cancer Res Off J Am Assoc Cancer Res 15:668–676

    Article  CAS  Google Scholar 

  5. de Reyniès A, Assié G, Rickman DS, Tissier F, Groussin L, René-Corail F, Dousset B, Bertagna X, Clauser E, Bertherat J (2009) Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol Off J Am Soc Clin Oncol 27:1108–1115

    Article  Google Scholar 

  6. Assié G, Letouzé E, Fassnacht M, et al (2014) Integrated genomic characterization of adrenocortical carcinoma. Nat Genet 46:607–612

    Article  Google Scholar 

  7. Mete O, Gucer H, Kefeli M, Asa SL (2018) Diagnostic and Prognostic Biomarkers of Adrenal Cortical Carcinoma. Am J Surg Pathol 42:201–213

    Article  Google Scholar 

  8. Pinheiro C, Granja S, Longatto-Filho A, Faria AM, Fragoso MCBV, Lovisolo SM, Lerário AM, Almeida MQ, Baltazar F, Zerbini MCN (2015) Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors. Oncotarget 6:44403–44421

    Article  Google Scholar 

  9. Pinheiro C, Granja S, Longatto-Filho A, et al (2017) GLUT1 expression in pediatric adrenocortical tumors: a promising candidate to predict clinical behavior. Oncotarget. https://doi.org/10.18632/oncotarget.19135

  10. Fenske W, Völker H-U, Adam P, et al (2009) Glucose transporter GLUT1 expression is an stage-independent predictor of clinical outcome in adrenocortical carcinoma. Endocr Relat Cancer 16:919–928

    Article  Google Scholar 

  11. Liberti MV, Locasale JW (2016) The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci 41:211–218

    Article  CAS  Google Scholar 

  12. Vander Heiden MG, DeBerardinis RJ (2017) Understanding the Intersections between Metabolism and Cancer Biology. Cell 168:657–669

    Article  CAS  Google Scholar 

  13. Sullivan LB, Gui DY, Heiden MGV (2016) Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 16:680–693

    Article  CAS  Google Scholar 

  14. Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16:635–649

    Article  CAS  Google Scholar 

  15. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  Google Scholar 

  16. Vander Heiden MG, Locasale JW, Swanson KD, et al (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499

    Article  CAS  Google Scholar 

  17. Kjellin H, Johansson H, Höög A, Lehtiö J, Jakobsson P-J, Kjellman M (2014) Differentially Expressed Proteins in Malignant and Benign Adrenocortical Tumors. PLOS ONE 9:e87951

    Article  Google Scholar 

  18. Else T, Lerario AM, Everett J, et al (2017) Adrenocortical carcinoma and succinate dehydrogenase gene mutations. Eur J Endocrinol EJE-17-0358

  19. Ganapathy-Kanniappan S, Geschwind J-FH (2013) Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 12:152

    Article  Google Scholar 

  20. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  Google Scholar 

  21. Reske SN, Grillenberger KG, Glatting G, Port M, Hildebrandt M, Gansauge F, Beger HG (1997) Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma. J Nucl Med Off Publ Soc Nucl Med 38:1344–1348

    CAS  Google Scholar 

  22. Gao Y, Xu D, Yu G, Liang J (2015) Overexpression of metabolic markers HK1 and PKM2 contributes to lymphatic metastasis and adverse prognosis in Chinese gastric cancer. Int J Clin Exp Pathol 8:9264–9271

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wincewicz A, Sulkowska M, Koda M, Sulkowski S (2007) Clinicopathological significance and linkage of the distribution of HIF-1α and GLUT-1 in human primary colorectal cancer. Pathol Oncol Res 13:15

    Article  CAS  Google Scholar 

  24. Grover-McKay M, Walsh SA, Seftor EA, Thomas PA, Hendrix MJ (1998) Role for glucose transporter 1 protein in human breast cancer. Pathol Oncol Res POR 4:115–120

    Article  CAS  Google Scholar 

  25. Agnihotri S, Zadeh G (2016) Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro-Oncol 18:160–172

    Article  Google Scholar 

  26. Takeuchi S, Balachandran A, Habra MA, Phan AT, Bassett RL, Macapinlac HA, Chuang HH (2014) Impact of 18F-FDG PET/CT on the management of adrenocortical carcinoma: analysis of 106 patients. Eur J Nucl Med Mol Imaging 41:2066–2073

    Article  Google Scholar 

  27. Becherer A, Vierhapper H, Pötzi C, Karanikas G, Kurtaran A, Schmaljohann J, Staudenherz A, Dudczak R, Kletter K (2001) FDG-PET in adrenocortical carcinoma. Cancer Biother Radiopharm 16:289–295

    Article  CAS  Google Scholar 

  28. Deandreis D, Leboulleux S, Caramella C, Schlumberger M, Baudin E (2011) FDG PET in the management of patients with adrenal masses and adrenocortical carcinoma. Horm Cancer 2:354–362

    Article  Google Scholar 

  29. Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25:4683–4696

    Article  CAS  Google Scholar 

  30. Israelsen WJ, Vander Heiden MG (2015) Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol 43:43–51

    Article  CAS  Google Scholar 

  31. Jochmanova I, Pacak K (2016) Pheochromocytoma: The First Metabolic Endocrine Cancer. Clin Cancer Res 22:5001–5011

    Article  CAS  Google Scholar 

  32. Duan K, Mete O (2017) Familial endocrine tumor syndromes: Clinical and predictive roles of molecular histopathology. AJSP: Reviews and Reports; 22:246–268.

    Google Scholar 

  33. Pacak K, Wimalawansa SJ (2015) Pheochromocytoma and paraganglioma. Endocr Pract 21:406–412

    Article  Google Scholar 

  34. Batisse-Lignier M, Sahut-Barnola I, Tissier F, et al (2017) P53/Rb inhibition induces metastatic adrenocortical carcinomas in a preclinical transgenic model. Oncogene. https://doi.org/10.1038/onc.2017.54

  35. De Martino MC, Feelders RA, de Herder WW, et al (2014) Characterization of the mTOR pathway in human normal adrenal and adrenocortical tumors. Endocr Relat Cancer 21:601–613

    Article  Google Scholar 

  36. Ross JS, Wang K, Rand JV, et al (2014) Next-generation sequencing of adrenocortical carcinoma reveals new routes to targeted therapies. J Clin Pathol 67:968–973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank both Drs. Thomas Giordano and Antonio Marcondes Lerario (University of Michigan Hospital, Michigan Medicine), for assisting the authors to obtain the expression status of HK1, PKM and RPS6 from the TCGA database.

Funding

This work was funded in part by a Canadian Institutes of Health Research (CIHR) New Investigator Foundation Grant FDN-148385 (D.A.W.). D.A.W. holds an Ontario Ministry of Innovation Early Researcher Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Mete.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, K., Gucer, H., Kefeli, M. et al. Immunohistochemical Analysis of the Metabolic Phenotype of Adrenal Cortical Carcinoma. Endocr Pathol 31, 231–238 (2020). https://doi.org/10.1007/s12022-020-09624-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-020-09624-3

Keywords

Navigation