Skip to main content

Advertisement

Log in

Construction of hybrid polycyclic quinolinobenzo[a]phenazinone architectures using solid-state melt reaction (SSMR)

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An efficient and versatile protocol for the synthesis of hybrid polycyclic quinolinobenzo[a]phenazinones has been developed under SSMR condition via intramolecular domino Knoevenagel–hetero-Diels–Alder reaction involving the generation of two new six membered fused rings and three contiguous stereogenic centers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

References

  1. Maskey RP, Shaaban M, Grun-Wollny I, Laatsch H (2004) Quinazolin-4-one derivatives from streptomyces isolates§. J Nat Prod 67:1131–1134. https://doi.org/10.1021/np0305425

    Article  CAS  PubMed  Google Scholar 

  2. Potewar TM, Kathiravan MK, Chothec AS, Srinivasana KV (2011) An improved synthesis of the alkaloid Luotonin-A employing ionic liquid and water as key solvents. Eur J Chem 2:235–237. https://doi.org/10.5155/eurjchem.2.2.235-237.205

    Article  CAS  Google Scholar 

  3. Milinkevich KA, Kurth MJ (2009) Preparation of a spiroisoxazolinopiperidinylbenzamide-based scaffold. Synlett 18:3019–3023. https://doi.org/10.1055/s-0029-1218290

    Article  CAS  Google Scholar 

  4. Dadiboyena S, Valente EJ, Hamme AT (2009) A novel synthesis of 1,3,5-trisubstituted pyrazoles through a spiro-pyrazoline intermediate via a tandem 1,3-dipolar cycloaddition/elimination. Tetrahedron Lett 50:291–294. https://doi.org/10.1016/j.tetlet.2008.10.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bekhit AA, El-Sayed OA, Aboulmagd E, Park JY (2004) Tetrazolo[1,5-a]quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents. Eur J Med Chem 39:249–255. https://doi.org/10.1016/j.ejmech.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  6. Bojinov VB, Garchav IK (2003) Synthesis of ethyl 3-aryl-1-methyl-8-oxo-8H-anthra[9,1-gh]quinoline-2-carboxylates as dyes for potential application in liquid crystal displays. Org Lett 5:2185–2187. https://doi.org/10.1021/ol034687e

    Article  CAS  PubMed  Google Scholar 

  7. Kumar A, Srivastava S, Gupta G, Chaturvedi V, Sinha S, Srivastava R (2011) Natural product inspired diversity oriented synthesis of tetrahydroquinoline scaffolds as antitubercular agent. ACS Comb Sci 13(1):65–71. https://doi.org/10.1021/co100022h

    Article  CAS  PubMed  Google Scholar 

  8. Eftekhari-Sis B, Zirak M, Akbari A (2013) Arylglyoxals in synthesis of heterocyclic compounds. Chem Rev 113(5):2958–3043. https://doi.org/10.1021/cr300176g

    Article  CAS  PubMed  Google Scholar 

  9. Despotopoulou C, Klier L, Knochel P (2009) Synthesis of fully substituted pyrazoles via regio- and chemoselective metalations. Org Lett 11(15):3326–3329. https://doi.org/10.1021/ol901208d

    Article  CAS  PubMed  Google Scholar 

  10. He W, Meyers MR, Hanney B, Spada AP, Bilder G, Galzcinski H, Amin D, Needle S, Page K, Jayyosi Z, Perrone MH (2003) Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2: the synthesis and biological activities of RPR127963 an orally bioavailable inhibitor. Bioorg Med Chem Lett 13(18):3097–3100. https://doi.org/10.1016/s0960-894x(03)00655-3

    Article  CAS  PubMed  Google Scholar 

  11. Katritzky AR, Wang M, Zhang S, Voronkov MV, Steel PJ (2001) Regioselective synthesis of polysubstituted pyrazoles and isoxazoles. J Org Chem 66(20):6787–6791. https://doi.org/10.1021/jo0101407

    Article  CAS  PubMed  Google Scholar 

  12. Guimaraes CRW, Boger DL, Jorgensen WL (2005) Elucidation of fatty acid amide hydrolase inhibition by potent α-ketoheterocycle derivatives from Monte Carlo simulations. J Am Chem Soc 127(49):17377–17384. https://doi.org/10.1021/ja055438j

    Article  CAS  PubMed  Google Scholar 

  13. Nicolaou KC, Synder SA, Montagnon T, Vassilikogiannakis G (2002) The Diels–Alder reaction in total synthesis. Angew Chem Int Ed 41(10):1668–1698. https://doi.org/10.1002/1521-3773(20020517)41:10%3c1668:AID-ANIE1668%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  14. Takao K, Munakata R, Tadano K (2005) Recent advances in natural product synthesis by using intramolecular Diels–Alder reactions. Chem Rev 105(12):4779–4807. https://doi.org/10.1021/cr040632u

    Article  CAS  PubMed  Google Scholar 

  15. Bur SK, Padwa A (2004) The pummerer reaction: methodology and strategy for the synthesis of heterocyclic compounds. Chem Rev 104(5):2401–2432. https://doi.org/10.1021/cr020090l

    Article  CAS  PubMed  Google Scholar 

  16. Chen F, Huang J (2005) Reserpine: a challenge for total synthesis of natural products. Chem Rev 105(12):4671–4706. https://doi.org/10.1021/cr050521a

    Article  CAS  PubMed  Google Scholar 

  17. Coldham I, Hufton R (2005) Intramolecular dipolar cycloaddition reactions of azomethine ylides. Chem Rev 105(7):2765–2809. https://doi.org/10.1021/cr040004c

    Article  CAS  PubMed  Google Scholar 

  18. Hudlicky T (1996) Design constraints in practical syntheses of complex molecules: current status, case studies with carbohydrates and alkaloids, and future perspectives. Chem Rev 96(1):3–30. https://doi.org/10.1021/cr950012g

    Article  CAS  PubMed  Google Scholar 

  19. Tietze LF (1996) Domino reactions in organic synthesis. Chem Rev 96(1):115–136. https://doi.org/10.1021/cr950027e

    Article  CAS  PubMed  Google Scholar 

  20. Pellissier H (2006) Asymmetric domino reactions. Part A: reactions based on the use of chiral auxiliaries. Tetrahedron 62(8):1619–1665. https://doi.org/10.1016/j.tet.2005.10.040

    Article  CAS  Google Scholar 

  21. Pellissier H (2006) Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron 62(10):2143–2173. https://doi.org/10.1016/j.tet.2005.10.041

    Article  CAS  Google Scholar 

  22. Tietze LF, Rackelmann N (2004) Pure Appl Chem 76(11):1967–1983. https://doi.org/10.1351/pac200476111967

    Article  CAS  Google Scholar 

  23. Tietze LF, Kinzel T, Brazel CC (2009) The domino multicomponent allylation reaction for the stereoselective synthesis of homoallylic alcohols. Acc Chem Res 42(2):367–378. https://doi.org/10.1021/ar800170y

    Article  CAS  PubMed  Google Scholar 

  24. Enders D, Wang C, Bats JW (2008) Organocatalytic asymmetric domino reactions: a cascade consisting of a michael addition and an aldehyde α-alkylation. Angew Chem Int Ed 47(39):7539–7542. https://doi.org/10.1002/anie.200802532

    Article  CAS  Google Scholar 

  25. Zhang Z, Zhang Q, Sun S, Xiong T, Liu Q (2007) Domino ring-opening/recyclization reactions of doubly activated cyclopropanes as a strategy for the synthesis of furoquinoline derivatives. Angew Chem Int Ed 46(10):1726–1729. https://doi.org/10.1002/anie.200604276

    Article  CAS  Google Scholar 

  26. Yadav AK, Peruncheralathan S, Ila H, Junjappa H (2007) Domino carbocationic rearrangement of α-[bis(methylthio)methylene]alkyl-2-(3/2-indolyl) cyclopropyl ketones. J Org Chem 72(4):1388–1394. https://doi.org/10.1021/jo062302a

    Article  CAS  PubMed  Google Scholar 

  27. Lee YR, Kim YM, Kim SH (2009) Efficient one-pot synthesis of benzopyranobenzopyrans and naphthopyranobenzopyrans by domino aldol-type reaction/hetero Diels–Alder reaction of resorcinols and naphthols. Tetrahedron 65:101–108. https://doi.org/10.1016/j.tet.2008.10.101

    Article  CAS  Google Scholar 

  28. Sunderhaus JD, Martin SF (2009) Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chem Eur J 15(6):1300–1308. https://doi.org/10.1002/chem.200802140

    Article  CAS  PubMed  Google Scholar 

  29. Ganem B (2009) Strategies for innovation in multicomponent reaction design. Acc Chem Res 42(3):463–472. https://doi.org/10.1021/ar800214s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramon DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem 44(11):1602–1634. https://doi.org/10.1002/anie.200460548

    Article  CAS  Google Scholar 

  31. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106(1):17–89. https://doi.org/10.1021/cr0505728

    Article  CAS  PubMed  Google Scholar 

  32. Dömling A, Wang W, Wang K (2012) Chemistry and biology of multicomponent reactions. Chem Rev 112(6):3083–3135. https://doi.org/10.1021/cr100233r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Slobbe P, Ruijter E, Orru RVA (2012) Recent applications of multicomponent reactions in medicinal chemistry. Med Chem Commun 3:1189–1218. https://doi.org/10.1039/c2md20089a

    Article  CAS  Google Scholar 

  34. Nicolaou KC, Edmonds DJ, Bulger PG (2006) Cascade reactions in total synthesis. Angew Chem Int Ed 45(43):7134–7186. https://doi.org/10.1002/anie.200601872

    Article  CAS  Google Scholar 

  35. Enders E, Narine AA (2008) Lessons from nature: biomimetic organocatalytic carbon–carbon bond formations. J Org Chem 73(20):7857–7870. https://doi.org/10.1021/jo801374j

    Article  CAS  PubMed  Google Scholar 

  36. Dömling A, Ugi I (2000) Multi-component reactions with isocyanides. Angew Chem 112(18):3300–3344. https://doi.org/10.1002/1521-3757(20000915)112:18%3c3300:AID-ANGE3300%3e3.0.CO;2-Z

    Article  Google Scholar 

  37. Brauch S, van Berkel S, Westermann B (2013) Higher-order multicomponent reactions: beyond four reactants. Chem Soc Rev 42:4948–4962. https://doi.org/10.1039/C3CS35505E

    Article  CAS  PubMed  Google Scholar 

  38. Yang F, Zheng L, Xiang J, Dang Q, Bai X (2010) Synthesis of hexahydrobenzo[b]pyrimido[4,5-h][1,6]naphthyridines via an intramolecular hetero-Diels–Alder reaction. J Comb Chem 12(4):476–481. https://doi.org/10.1021/cc100018b

    Article  CAS  PubMed  Google Scholar 

  39. Kim I, Kim SG, Choi J, Lee GH (2008) Facile synthesis of benzo-fused 2,8-dioxabicyclo[3.3.1]nonane derivatives via a domino Knoevenagel condensation/hetero-Diels–Alder reaction sequence. Tetrahedron 64(4):664–671. https://doi.org/10.1016/j.tet.2007.11.036

    Article  CAS  Google Scholar 

  40. Foster RAA, Willis MC (2013) Tandem inverse-electron-demand hetero-/retro-Diels–Alder reactions for aromatic nitrogen heterocycle synthesis. Chem Soc Rev 42:63–76. https://doi.org/10.1039/C2CS35316D

    Article  CAS  PubMed  Google Scholar 

  41. Fustero S, Sanchez-Rosello M, Barrio P, Simon-Fuentes A (2011) From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem Rev 111(11):6984–7034. https://doi.org/10.1021/cr2000459

    Article  CAS  PubMed  Google Scholar 

  42. Bondock S, Khalifa W, Fadda AA (2011) Synthesis and antimicrobial activity of some new 4-hetarylpyrazole and furo[2,3-c]pyrazole derivatives. Eur J Med Chem 46(6):2555–2561. https://doi.org/10.1016/j.ejmech.2011.03.045

    Article  CAS  PubMed  Google Scholar 

  43. Isambert N, Lavilla R (2008) Heterocycles as key substrates in multicomponent reactions: the fast lane towards molecular complexity. Chem Eur J 14(28):8444–8454. https://doi.org/10.1002/chem.200800473

    Article  CAS  PubMed  Google Scholar 

  44. Miura Y, Hayashi N, Yokoshima S, Fukuyama T (2012) Total synthesis of (−)-isoschizogamine. J Am Chem Soc 134(29):11995–11997. https://doi.org/10.1021/ja305856q

    Article  CAS  PubMed  Google Scholar 

  45. Powell DA, Batey RA (2002) Total synthesis of the alkaloids martinelline and martinellic acid via a hetero Diels–Alder multicomponent coupling reaction. Org Lett 4(17):2913–2916. https://doi.org/10.1021/ol026293d

    Article  CAS  PubMed  Google Scholar 

  46. Andrade-Nieto VF, Goulart MOF, Silva Filho JF, Silva MJ, Pinto FRMC, Pinto AV, Zalis MG, Carvalho LH, Krettli AU (2004) Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg Med Chem Lett 14(5):1145–1149. https://doi.org/10.1016/j.bmcl.2003.12.069

    Article  CAS  Google Scholar 

  47. Gamage SA, Spicer JA, Rewcastle GW, Milton J, Sohal S, Dangerfield W, Mistry P, Vicker N, Charlton PA, Denny WA (2002) Structure–activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J Med Chem 45(3):740–743. https://doi.org/10.1021/jm010330+

    Article  CAS  PubMed  Google Scholar 

  48. Mantelingu K, Lin Y, Seidel D (2014) Intramolecular [3 + 2]-cycloadditions of azomethine ylides derived from secondary amines via redox-neutral C–H functionalization. Org Lett 16(22):5910–5913. https://doi.org/10.1021/ol502918g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mantelingu K, Reddy BA, Swaminathan V, Kishore AH, Siddappa NB, Kumar GV, Nagashankar G, Natesh N, Roy S, Sadhale PP, Ranga U, Kundu TK (2007) Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 14(6):645–657. https://doi.org/10.1016/j.chembiol.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  50. Lingaraju GS, Swaroop TR, Vinayaka AC, Sharath Kumar KS, Sadashiva MP, Rangappa KS (2012) An easy access to 4,5-disubstituted thiazoles via base-induced click reaction of active methylene isocyanides with methyl dithiocarboxylates. Synthesis 44(9):1373–1379. https://doi.org/10.1055/s-0031-1290762

    Article  CAS  Google Scholar 

  51. Bakthadoss M, Sivakumar G (2014) Highly stereo and chemoselective synthesis of tetra and pentacyclic frameworks using solid-state melt reaction (SSMR). Tetrahedron Lett 55(10):1765–1770. https://doi.org/10.1016/j.tetlet.2014.01.126

    Article  CAS  Google Scholar 

  52. Bakthadoss M, Srinivasan J, Hussain MA, Sharada DS (2019) Two step, one-pot sequential synthesis of functionalized hybrid polyheterocyclic scaffolds via a solid-state melt reaction (SSMR). RSC Adv 9:24314–24318. https://doi.org/10.1039/C9RA02590A

    Article  CAS  Google Scholar 

  53. Bakthadoss M, Sivakumar G, Kannan D (2009) Solid-state melt reaction for the domino process: highly efficient synthesis of fused tetracyclic chromenopyran pyrimidinediones using Baylis–Hillman derivatives. Org Lett 11(19):4466–4469. https://doi.org/10.1021/ol901228j

    Article  CAS  PubMed  Google Scholar 

  54. Bakthadoss M, Kannan D, Selvakumar R (2013) A multicomponent cascade reaction for the synthesis of novel chromenopyranpyrazole scaffold. Chem Commun 49:10947–10949. https://doi.org/10.1039/C3CC45502E

    Article  CAS  Google Scholar 

  55. Bakthadoss M, Devaraj A, Kannan D (2014) Multicomponent cascade assembly for quinolinopyranpyrazole architectures. Eur J Org Chem 7:1505–1513. https://doi.org/10.1002/ejoc.201301422

    Article  CAS  Google Scholar 

  56. Bakthadoss M, Agarwal V (2018) Synthesis of highly functionalized tricyclic chromenopyrazole frameworks via intramolecular azomethine imine 1,3-dipolar cycloaddition (IAIDC). Chem Sel 3(24):6960–6964. https://doi.org/10.1002/slct.201801269

    Article  CAS  Google Scholar 

  57. Bakthadoss M, Kannan D, Sivakumar N, Malathi P, Manikandan V (2015) Stereoselective construction of functionalized tetracyclic and pentacyclic coumarinopyranpyrazole/pyrimidinedione/coumarin scaffolds using a solid-state melt reaction. Org Biomol Chem 13:5597–5601. https://doi.org/10.1039/C5OB00442J

    Article  CAS  PubMed  Google Scholar 

  58. Bakthadoss M, Vinayagam V, Agarwal V, Sharada DS (2019) Three component, one-pot synthesis of multifunctional quinolinopyranpyrazoles via catalyst-free multicomponent reaction. Chem Sel 4(27):7996–7999. https://doi.org/10.1002/slct.201901806

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank CSIR (New Delhi) [02(0303)/17/EMR-II] for the financial support. We acknowledge the Central Instrumentation Facility (CIF), Pondicherry University for NMR spectra and DST-FIST for the ESI-HRMS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manickam Bakthadoss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakthadoss, M., Vinayagam, V. Construction of hybrid polycyclic quinolinobenzo[a]phenazinone architectures using solid-state melt reaction (SSMR). Mol Divers 25, 2447–2458 (2021). https://doi.org/10.1007/s11030-020-10090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10090-6

Keywords

Navigation