Skip to main content
Log in

Recovery of valuable metals from copper slag

  • Original Article
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

The copper smelting process produces plenty of copper slag every year, which is a hazardous solid waste, but a secondary resource. In the present study, the extraction of copper, nickel, and cobalt from copper slag was investigated through the process of sulfation roasting–water leaching and the process of sulfation roasting–sulfate decomposition roasting–water leaching respectively. Compared with the process of sulfation roasting–water leaching, the process of sulfation roasting–sulfate decomposition roasting–water leaching is a better choice, which could not only get almost the same leaching of copper, nickel, and cobalt as the former process, but has a lower leaching of iron and aluminum. For the process of sulfation roasting–sulfate decomposition roasting–water leaching, the leaching of Cu, Ni, and Co reached up to 74.2%, 71.1%, and 69.6% respectively, under the optimal conditions including sulfation roasted with 80 wt% sulfuric acid addition at 200 °C for 60 min and sulfate decomposition roasted at 650 °C for 60 min, followed by water leached at 90 °C for 30 min with a liquid–solid ratio of 2 ml/g. The leaching of Fe and Al was only 4.9% and 17.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Potysz A, van Hullebusch ED, Kierczak J, Grybos M, Lens PNL, Guibaud G (2015) Copper metallurgical slags—current knowledge and fate: a review. Crit Rev Environ Sci Technol 45(22):2424–2488. https://doi.org/10.1080/10643389.2015.1046769

    Article  Google Scholar 

  2. Hu JH, Wang H, Zhao LM, Li L, Liu HL (2011) Characterization of copper slag from impoverishment. J Saf Environ 11(2):90–93. https://doi.org/10.3969/j.issn.1009-6094.2011.02.022

    Article  Google Scholar 

  3. Sarfo P, Das A, Wyss G, Young C (2017) Recovery of metal values from copper slag and reuse of residual secondary slag. Waste Manag 70:272–281. https://doi.org/10.1016/j.wasman.2017.09.024

    Article  Google Scholar 

  4. Guo ZQ, Zhu DQ, Pan J, Zhang F (2018) Innovative methodology for comprehensive and harmless utilization of waste copper slag via selective reduction-magnetic separation process. J Clean Prod 187:910–922. https://doi.org/10.1016/j.jclepro.2018.03.264

    Article  Google Scholar 

  5. Yang HF, Jing LL, Dang CG (2011) Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation. Chin Nonferrous Met 21(5):1165–1170. https://doi.org/10.1016/B978-0-444-53599-3.10005-8

    Article  Google Scholar 

  6. Li SW, Pan J, Zhu DQ, Guo ZQ, Xu JW, Chou JL (2019) A novel process to upgrade the copper slag by direct reduction-magnetic separation with the addition of Na2CO3 and CaO. Powder Technol 347:159–169. https://doi.org/10.1016/j.powtec.2019.02.046

    Article  Google Scholar 

  7. Herreros O, Quiroz R, Manzano E, Bou C, Vinals J (1998) Copper extraction from reverberatory and flash furnace slags by chlorine leaching. Hydrometallurgy 49(1):87–101. https://doi.org/10.1016/S0304-386X(98)00010-3

    Article  Google Scholar 

  8. Zang Y, Man RL, Ni WD, Wang H (2010) Selective leaching of base metals from copper smelter slag. Hydrometallurgy 103(1):25–29. https://doi.org/10.1016/j.hydromet.2010.02.009

    Article  Google Scholar 

  9. Altundogan HS, Boyrazli M, Tumen F (2004) A study on the sulphuric acid leaching of copper converter slag in the presence of dichromate. Miner Eng 17(3):465–467. https://doi.org/10.1016/j.mineng.2003.11.002

    Article  Google Scholar 

  10. Banza AN, Gock E, Kongolo K (2002) Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction. Hydrometallurgy 67(1):63–69. https://doi.org/10.1016/S0304-386X(02)00138-X

    Article  Google Scholar 

  11. Huang FR, Liao YL, Zhou J, Wang YY, Li H (2015) Selective recovery of valuable metals from nickel converter slag at elevated temperature with sulfuric acid solution. Sep Purif Technol 156:572–581. https://doi.org/10.1016/j.seppur.2015.10.051

    Article  Google Scholar 

  12. Khalid MK, Hamuyuni J, Agarwal V, Agarwal V, Pihlasalo J, Haapalainen M, Lundstroumlm M (2019) Sulfuric acid leaching for capturing value from copper rich converter slag. J Clean Prod 215:1005–1013. https://doi.org/10.1016/j.jclepro.2019.01.083

    Article  Google Scholar 

  13. Perederiy I, Papangelakis VG (2017) Why amorphous FeO-SiO2 slags do not acid-leach at high temperatures. J Hazard Mater 321:737–744. https://doi.org/10.1016/j.jhazmat.2016.09.055

    Article  Google Scholar 

  14. Aleksandrov PV, Medvedev AS, Imideev VA, Moskovskikh DO (2019) Nickel sulphide concentrate processing via low-temperature calcination with sodium chloride. Part 1-identification of interaction products. Miner Eng 134:37–53. https://doi.org/10.1016/j.mineng.2019.01.001

    Article  Google Scholar 

  15. Cui FH, Mu WN, Wang S, Xin HX, Shen HT, Xu Q, Zhai YC, Luo SH (2018) Synchronous extractions of nickel, copper, and cobalt by selective chlorinating roasting and water leaching to low-grade nickel–copper matte. Sep Purif Technol 195:149–162. https://doi.org/10.1016/j.seppur.2017.11.071

    Article  Google Scholar 

  16. Sukla LB, Panda SC, Jena PK (1986) Recovery of cobalt, nickel and copper from converter slag through roasting with ammonium sulphate and sulphuric acid. Hydrometallurgy 16(2):153–165. https://doi.org/10.1016/0304-386X(86)90040-X

    Article  Google Scholar 

  17. Tümen F, Bailey NT (1990) Recovery of metal values from copper smelter slags by roasting with pyrite. Hydrometallurgy 25(3):317–328. https://doi.org/10.1016/0304-386X(90)90047-6

    Article  Google Scholar 

  18. Guo XY, Li D, Park K-H, Tian QH, Wu Z (2009) Leaching behavior of metals from a limonitic nickel laterite using a sulfation–roasting–leaching process. Hydrometallurgy 99(3):144–150. https://doi.org/10.1016/j.hydromet.2009.07.012

    Article  Google Scholar 

  19. Zhang LN, Zhang L, Wang MY, Sui ZT (2005) Treatment and resourceful disposal of copper slag. Multipurpose Util Miner Resour 5:22–26. https://doi.org/10.3969/j.issn.1000-6532.2005.05.006

    Article  Google Scholar 

  20. Arslan C, Arslan F (2002) Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometallurgy 67(1):1–7. https://doi.org/10.1016/S0304-386X(02)00139-1

    Article  MathSciNet  Google Scholar 

  21. Tagawa H (1984) Thermal decomposition temperatures of metal sulfates. Thermochim Acta 80(1):23–33. https://doi.org/10.1016/0040-6031(84)87181-6

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (51974369) and the Natural Science Foundation of Hunan Province (2016JJ2142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Wang.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Hu, B., Wang, H. et al. Recovery of valuable metals from copper slag. Mining, Metallurgy & Exploration 37, 1241–1251 (2020). https://doi.org/10.1007/s42461-020-00224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-020-00224-7

Keywords

Navigation