Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure–property–function relationships of natural and engineered wood

Abstract

The complex structure of wood, one of the most abundant biomaterials on Earth, has been optimized over 270 million years of tree evolution. This optimization has led to the highly efficient water and nutrient transport, mechanical stability and durability of wood. The unique material structure and pronounced anisotropy of wood endows it with an array of remarkable properties, yielding opportunities for the design of functional materials. In this Review, we provide a materials and structural perspective on how wood can be redesigned via structural engineering, chemical and/or thermal modification to alter its mechanical, fluidic, ionic, optical and thermal properties. These modifications enable a diverse range of applications, including the development of high-performance structural materials, energy storage and conversion, environmental remediation, nanoionics, nanofluidics, and light and thermal management. We also highlight advanced characterization and computational-simulation approaches for understanding the structure–property–function relationships of natural and modified wood, as well as informing bio-inspired synthetic designs. In addition, we provide our perspective on the future directions of wood research and the challenges and opportunities for industrialization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The hierarchical and porous structure of wood at multiple length scales.
Fig. 2: A selection of structural modification strategies for wood.
Fig. 3: Strategies to enhance the mechanical strength and fire resistance of wood.
Fig. 4: Structural modifications to enhance multiphase transport for water and energy applications.
Fig. 5: Manipulating the optical properties of wood.
Fig. 6: Manipulating the thermal properties of wood.
Fig. 7: Characterization techniques for determining the structure–property–function relationships of wood.

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations. Global production and trade of forest products in 2018. FAO http://www.fao.org/forestry/statistics/80938/en/ (2018).

  2. Wimmers, G. Wood: a construction material for tall buildings. Nat. Rev. Mater. 2, 17051 (2017).

    Google Scholar 

  3. Balat, M. & Bozbas, K. Wood as an energy source: potential trends, usage of wood, and energy politics. Energ. Source. Part A 28, 837–844 (2006).

    Google Scholar 

  4. Sjostrom, E. Wood Chemistry: Fundamentals and Applications (Elsevier, 1993).

  5. Ling, S., Kaplan, D. L. & Buehler, M. J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018).

    CAS  Google Scholar 

  6. Zhu, H. et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374 (2016).

    CAS  Google Scholar 

  7. Gibson, L. J., Ashby, M. F. & Harley, B. A. Cellular Materials in Nature and Medicine (Cambridge Univ. Press, 2010).

  8. Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M. & Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

    CAS  Google Scholar 

  9. Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    CAS  Google Scholar 

  10. Fahlén, J. & Salmén, L. Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J. Mater. Sci. 38, 119–126 (2003).

    Google Scholar 

  11. Berglund, L. A. & Burgert, I. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, 1704285 (2018).

    Google Scholar 

  12. Hill, C. A. S. Wood Modification: Chemical, Thermal and Other Processes Vol. 5 (John Wiley & Sons, 2007).

  13. Evans, P. D., Michell, A. J. & Schmalzl, K. J. Studies of the degradation and protection of wood surfaces. Wood Sci. Technol. 26, 151–163 (1992).

    CAS  Google Scholar 

  14. Evans, P., Matsunaga, H. & Kiguchi, M. Large-scale application of nanotechnology for wood protection. Nat. Nanotechnol. 3, 577 (2008).

    CAS  Google Scholar 

  15. Hill, C. A. S. Wood modification: An update. BioResources 6, 918–919 (2011).

    CAS  Google Scholar 

  16. Rowell, R. M. in Handbook of Engineering Biopolymers, Homopolymers, Blends, and Composites (eds Fakirov, S. & Bhattacharyya, D.) 673–691 (Hanser Gardner Publications, 2007).

  17. Homan, W. J. & Jorissen, A. J. Wood modification developments. Heron 49, 360–369 (2004).

    Google Scholar 

  18. Esteves, B. & Pereira, H. Wood modification by heat treatment: a review. BioResources 4, 370–404 (2008).

    Google Scholar 

  19. Fuchs, W. Genuine lignin. I. Acetylation of pine wood. Ber. Deutsch. Chem. Gesellsch. B 61, 948–951 (1928).

    Google Scholar 

  20. Lande, S., Westin, M. & Schneider, M. Properties of furfurylated wood. Scand. J. For. Res. 19, 22–30 (2004).

    Google Scholar 

  21. Fujimura, T., Uemura, I. & Inoue, M. Study on the high durability of wood with acryl high polymer (I). Interaction between wood and acryl high polymer. Wood Protect. 15, 62–71 (1989).

    Google Scholar 

  22. Jiang, F. et al. Wood-based nanotechnologies toward sustainability. Adv. Mater. 30, 1703453 (2018).

    Google Scholar 

  23. Fu, Q., Ansari, F., Zhou, Q. & Berglund, L. A. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano 12, 2222–2230 (2018).

    CAS  Google Scholar 

  24. Li, T. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608–613 (2019).

    CAS  Google Scholar 

  25. Guan, H., Cheng, Z. & Wang, X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12, 10365–10373 (2018).

    CAS  Google Scholar 

  26. Zhu, M. et al. Highly anisotropic, highly transparent wood composites. Adv. Mater. 28, 5181–5187 (2016).

    CAS  Google Scholar 

  27. Foster, E. J. et al. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 47, 2609–2679 (2018).

    CAS  Google Scholar 

  28. Utsumi, Y., Sano, Y., Fujikawa, S., Funada, R. & Ohtani, J. Visualization of cavitated vessels in winter and refilled vessels in spring in diffuse-porous trees by cryo-scanning electron microscopy. Plant. Physiol. 117, 1463–1471 (1998).

    CAS  Google Scholar 

  29. Gierlinger, N., Keplinger, T. & Harrington, M. Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 7, 1694–1708 (2012).

    CAS  Google Scholar 

  30. Agarwal, U. P. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224, 1141 (2006).

    CAS  Google Scholar 

  31. Zlotnikov, I., Zolotoyabko, E. & Fratzl, P. Nano-scale modulus mapping of biological composite materials: Theory and practice. Prog. Mater. Sci. 87, 292–320 (2017).

    CAS  Google Scholar 

  32. Saito, K. et al. Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry. Plant. J. 69, 542–552 (2012).

    CAS  Google Scholar 

  33. Plaza, N. Z., Pingali, S. V., Qian, S., Heller, W. T. & Jakes, J. E. Informing the improvement of forest products durability using small angle neutron scattering. Cellulose 23, 1593–1607 (2016).

    CAS  Google Scholar 

  34. Fernandes, A. N. et al. Nanostructure of cellulose microfibrils in spruce wood. Proc. Natl Acad. Sci. USA 108, E1195–E1203 (2011).

    Google Scholar 

  35. Zhu, H. et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl Acad. Sci. USA 112, 8971–8976 (2015).

    CAS  Google Scholar 

  36. Schmidt, J. & Kaliske, M. Models for numerical failure analysis of wooden structures. Eng. Struct. 31, 571–579 (2009).

    Google Scholar 

  37. Yano, H., Hirose, A. & Inaba, S. High-strength wood-based materials. J. Mater. Sci. Lett. 16, 1906–1909 (1997).

    CAS  Google Scholar 

  38. Donaldson, L. A. Lignification and lignin topochemistry — an ultrastructural view. Phytochemistry 57, 859–873 (2001).

    CAS  Google Scholar 

  39. Barnett, J. R. & Bonham, V. A. Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. 79, 461–472 (2004).

    CAS  Google Scholar 

  40. Weinkamer, R. & Fratzl, P. Mechanical adaptation of biological materials—The examples of bone and wood. Mater. Sci. Eng. C 31, 1164–1173 (2011).

    CAS  Google Scholar 

  41. Gordon, J. E. & Mattis, D. C. in The New Science of Strong Materials, or, Why You Don’t Fall Through the Floor (AAPT, 1985).

  42. Fang, C.-H., Mariotti, N., Cloutier, A., Koubaa, A. & Blanchet, P. Densification of wood veneers by compression combined with heat and steam. Eur. J. Wood Prod. 70, 155–163 (2012).

    CAS  Google Scholar 

  43. Bekhta, P., Hiziroglu, S. & Shepelyuk, O. Properties of plywood manufactured from compressed veneer as building material. Mater. Des. 30, 947–953 (2009).

    CAS  Google Scholar 

  44. Parˇil, P. et al. Comparison of selected physical and mechanical properties of densified beech wood plasticized by ammonia and saturated steam. Eur. J. Wood Prod. 72, 583–591 (2014).

    Google Scholar 

  45. Keplinger, T. et al. A versatile strategy for grafting polymers to wood cell walls. Acta Biomater. 11, 256–263 (2015).

    CAS  Google Scholar 

  46. Vitas, S., Keplinger, T., Reichholf, N., Figi, R. & Cabane, E. Functional lignocellulosic material for the remediation of copper (II) ions from water: towards the design of a wood filter. J. Hazard. Mater. 355, 119–127 (2018).

    CAS  Google Scholar 

  47. Chen, F. et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11, 4275–4282 (2017).

    CAS  Google Scholar 

  48. Zhu, M. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2018).

    Google Scholar 

  49. Li, T. et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 4, eaar3724 (2018).

    Google Scholar 

  50. Li, T. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5, eaau4238 (2019).

    CAS  Google Scholar 

  51. Song, J. et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12, 140–147 (2018).

    CAS  Google Scholar 

  52. Song, J. et al. Superflexible wood. ACS Appl. Mater. Interfaces 9, 23520–23527 (2017).

    CAS  Google Scholar 

  53. Kawamata, Y. et al. Kinetic analysis of delignification of cedar wood during organosolv treatment with a two-phase solvent using the unreacted-core model. Chem. Eng. J. 368, 71–78 (2019).

    CAS  Google Scholar 

  54. Shen, F. et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1600377 (2016).

    Google Scholar 

  55. Ermeydan, M. A., Cabane, E., Hass, P., Koetz, J. & Burgert, I. Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly (ε-caprolactone) grafting into the cell walls. Green Chem. 16, 3313–3321 (2014).

    CAS  Google Scholar 

  56. Cabane, E., Keplinger, T., Künniger, T., Merk, V. & Burgert, I. Functional lignocellulosic materials prepared by ATRP from a wood scaffold. Sci. Rep. 6, 31287 (2016).

    Google Scholar 

  57. Cabane, E., Keplinger, T., Merk, V., Hass, P. & Burgert, I. Renewable and functional wood materials by grafting polymerization within cell walls. ChemSusChem 7, 1020–1025 (2014).

    CAS  Google Scholar 

  58. Trey, S., Jafarzadeh, S. & Johansson, M. In situ polymerization of polyaniline in wood veneers. ACS Appl. Mater. Interfaces 4, 1760–1769 (2012).

    CAS  Google Scholar 

  59. Donath, S., Militz, H. & Mai, C. Wood modification with alkoxysilanes. Wood Sci. Technol. 38, 555–566 (2004).

    CAS  Google Scholar 

  60. Kong, L., Guan, H. & Wang, X. In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy. ACS Sustain. Chem. Eng. 6, 3349–3357 (2018).

    CAS  Google Scholar 

  61. Merk, V., Chanana, M., Gaan, S. & Burgert, I. Mineralization of wood by calcium carbonate insertion for improved flame retardancy. Holzforschung 70, 867–876 (2016).

    CAS  Google Scholar 

  62. Shin, Y., Liu, J., Chang, J. H., Nie, Z. & Exarhos, G. J. Hierarchically ordered ceramics through surfactant-templated sol-gel mineralization of biological cellular structures. Adv. Mater. 13, 728–732 (2001).

    CAS  Google Scholar 

  63. Song, J. et al. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228 (2018).

    CAS  Google Scholar 

  64. Li, Y. et al. Lignin-retaining transparent wood. ChemSusChem 10, 3445–3451 (2017).

    CAS  Google Scholar 

  65. He, S. et al. An energy-efficient, wood-derived structural material enabled by pore structure engineering towards building efficiency. Small Methods 4, 1900747 (2020).

    CAS  Google Scholar 

  66. Kong, W. et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30, 1801934 (2018).

    Google Scholar 

  67. Chen, C. et al. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017).

    CAS  Google Scholar 

  68. Keckes, J. et al. Cell-wall recovery after irreversible deformation of wood. Nat. Mater. 2, 810–813 (2003).

    CAS  Google Scholar 

  69. Guindos, P. & Guaita, M. A three-dimensional wood material model to simulate the behavior of wood with any type of knot at the macro-scale. Wood Sci. Technol. 47, 585–599 (2013).

    CAS  Google Scholar 

  70. Glass, S. V. & Zelinka, S. L. in Wood Handbook: Wood as an Engineering Material Ch. 4 (US Dept. Agriculture, Forest Service, Forest Products Laboratory, 2010).

  71. Holbrook, N. M. Transporting water to the tops of trees. Phys. Today 61, 76–77 (2008).

    Google Scholar 

  72. McCulloh, K. A., Sperry, J. S. & Adler, F. R. Water transport in plants obeys Murray’s law. Nature 421, 939–942 (2003).

    CAS  Google Scholar 

  73. Li, Y., Vasileva, E., Sychugov, I., Popov, S. & Berglund, L. Optically transparent wood: Recent progress, opportunities, and challenges. Adv. Opt. Mater. 6, 1800059 (2018).

    Google Scholar 

  74. Ross, R. J. (ed.) Wood Handbook: Wood as an Engineering Material (US Dept. Agriculture, Forest Service, Forest Products Laboratory, 2010).

  75. Gustavsson, L. & Sathre, R. Variability in energy and carbon dioxide balances of wood and concrete building materials. Build. Environ. 41, 940–951 (2006).

    Google Scholar 

  76. Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G. & Thiel, A. Cross laminated timber (CLT): overview and development. Eur. J. Wood Prod. 74, 331–351 (2016).

    CAS  Google Scholar 

  77. Mora Mendez, D. F. et al. Mechanical behavior of chemically modified Norway spruce: a generic hierarchical model for wood modifications. Wood Sci. Technol. 53, 447–467 (2019).

    CAS  Google Scholar 

  78. Niska, K. O. & Sain, M. Wood-Polymer Composites (Elsevier, 2008).

  79. Csizmadia, R., Faludi, G., Renner, K., Móczó, J. & Pukánszky, B. PLA/wood biocomposites: Improving composite strength by chemical treatment of the fibers. Compos. Part A Appl. Sci. Manuf. 53, 46–53 (2013).

    CAS  Google Scholar 

  80. Stamm, A. J. & Seborg, R. M. Forest Products Laboratory Resin-Treated, Laminated, Compressed Wood (Compreg) (US Dept. of Agriculture, Forest Service, 1960).

  81. Laine, K. et al. Measuring the thickness swelling and set-recovery of densified and thermally modified Scots pine solid wood. J. Mater. Sci. 48, 8530–8538 (2013).

    CAS  Google Scholar 

  82. Kamke, F. A. Densified radiata pine for structural composites. Maderas. Cienc. y. Tecnología 8, 83–92 (2006).

    Google Scholar 

  83. Shams, M. I., Yano, H. & Endou, K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin I: effects of pressing pressure and pressure holding. J. Wood Sci. 50, 337–342 (2004).

    CAS  Google Scholar 

  84. Shams, M. I., Yano, H. & Endou, K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin III: effects of sodium chlorite treatment. J. Wood Sci. 51, 234–238 (2005).

    CAS  Google Scholar 

  85. Frey, M. et al. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 10, 5030–5037 (2018).

    CAS  Google Scholar 

  86. Zhu, M. et al. Anisotropic, transparent films with aligned cellulose nanofibers. Adv. Mater. 29, 1606284 (2017).

    Google Scholar 

  87. Jia, C. et al. Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy 36, 366–373 (2017).

    CAS  Google Scholar 

  88. Frey, M. et al. Tunable wood by reversible interlocking and bioinspired mechanical gradients. Adv. Sci. 6, 1802190 (2019).

    Google Scholar 

  89. Gibson, L. J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9, 2749–2766 (2012).

    CAS  Google Scholar 

  90. Ashby, M. F. Materials Selection in Mechanical Design (Butterworth-Heinemann, 2011).

  91. Garcia, M., Hidalgo, J., Garmendia, I. & García-Jaca, J. Wood–plastics composites with better fire retardancy and durability performance. Compos. Part A Appl. Sci. Manuf. 40, 1772–1776 (2009).

    Google Scholar 

  92. Guo, H. et al. Bioinspired struvite mineralization for fire resistant wood. ACS Appl. Mater. Interfaces 11, 5427–5434 (2019).

    CAS  Google Scholar 

  93. Liu, J. et al. Hexagonal boron nitride nanosheets as high-performance binder-free fire-resistant wood coatings. Small 13, 1602456 (2017).

    Google Scholar 

  94. Carosio, F., Cuttica, F., Medina, L. & Berglund, L. A. Clay nanopaper as multifunctional brick and mortar fire protection coating—wood case study. Mater. Des. 93, 357–363 (2016).

    CAS  Google Scholar 

  95. Plackett, D. V., Dunningham, E. A. & Singh, A. P. Weathering of chemically modified wood. Holz als Roh-und Werkst. 50, 135 (1992).

    CAS  Google Scholar 

  96. Gan, W. et al. Dense, self-formed char layer enables a fire-retardant wood structural material. Adv. Funct. Mater. 29, 1807444 (2019).

    Google Scholar 

  97. Merk, V., Chanana, M., Keplinger, T., Gaan, S. & Burgert, I. Hybrid wood materials with improved fire retardance by bio-inspired mineralisation on the nano- and submicron level. Green Chem. 17, 1423–1428 (2015).

    CAS  Google Scholar 

  98. Fu, Q. et al. Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl. Mater. Interfaces 9, 36154–36163 (2017).

    CAS  Google Scholar 

  99. Rowell, R. M., Ibach, R. E., McSweeny, J. & Nilsson, T. Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Mater. Sci. Eng. 4, 14–22 (2009).

    CAS  Google Scholar 

  100. Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005).

    CAS  Google Scholar 

  101. Chen, C., Kuang, Y. & Hu, L. Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019).

    CAS  Google Scholar 

  102. Stein, D., Kruithof, M. & Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901 (2004).

    Google Scholar 

  103. Weigl, B. H. & Yager, P. Microfluidic diffusion-based separation and detection. Science 283, 346–347 (1999).

    Google Scholar 

  104. Jia, C. et al. Anisotropic, mesoporous microfluidic frameworks with scalable, aligned cellulose nanofibers. ACS Appl. Mater. Interfaces 10, 7362–7370 (2018).

    CAS  Google Scholar 

  105. Pendergast, M. M. & Hoek, E. M. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011).

    CAS  Google Scholar 

  106. Chen, C. et al. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015).

    CAS  Google Scholar 

  107. Jakes, J. E. Mechanism for diffusion through secondary cell walls in lignocellulosic biomass. J. Phys. Chem. B 123, 4333–4339 (2019).

    CAS  Google Scholar 

  108. Chen, C. & Hu, L. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc. Chem. Res. 51, 3154–3165 (2018).

    CAS  Google Scholar 

  109. Chen, C. et al. Nature-inspired tri-pathway design enabling high-performance flexible Li–O2 batteries. Adv. Energy Mater. 9, 1802964 (2019).

    Google Scholar 

  110. Peng, X. et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 31, 1900341 (2019).

    Google Scholar 

  111. Zhang, Y. et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl Acad. Sci. USA 114, 3584–3589 (2017).

    CAS  Google Scholar 

  112. Luo, W. et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode. Nano Lett. 17, 3792–3797 (2017).

    CAS  Google Scholar 

  113. Chen, C. et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7, 1700595 (2017).

    Google Scholar 

  114. Li, Y. et al. Enabling high-areal-capacity lithium–sulfur batteries: designing anisotropic and low-tortuosity porous architectures. ACS Nano 11, 4801–4807 (2017).

    CAS  Google Scholar 

  115. Song, H. et al. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 8, 1701203 (2018).

    Google Scholar 

  116. Wang, Y. et al. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 28, 1806207 (2018).

    Google Scholar 

  117. Tang, Z. et al. Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 130, 532–543 (2018).

    CAS  Google Scholar 

  118. Xu, S. et al. Flexible lithium–CO2 battery with ultrahigh capacity and stable cycling. Energy Environ. Sci. 11, 3231–3237 (2018).

    CAS  Google Scholar 

  119. Cheremisinoff, N. P. Handbook of Water and Wastewater Treatment Technologies (Butterworth-Heinemann, 2002).

  120. Khawaji, A. D., Kutubkhanah, I. K. & Wie, J.-M. Advances in seawater desalination technologies. Desalination 221, 47–69 (2008).

    CAS  Google Scholar 

  121. Che, W. et al. Wood-based mesoporous filter decorated with silver nanoparticles for water purification. ACS Sustain. Chem. Eng. 7, 5134–5141 (2019).

    CAS  Google Scholar 

  122. Wang, K. et al. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chem. Eng. J. 371, 769–780 (2019).

    CAS  Google Scholar 

  123. Bai, X. et al. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation. Sep. Purif. Technol. 210, 402–408 (2019).

    CAS  Google Scholar 

  124. Zhu, M. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29, 1704107 (2017).

    Google Scholar 

  125. Xue, G. et al. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 9, 15052–15057 (2017).

    CAS  Google Scholar 

  126. Liu, H. et al. High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018).

    Google Scholar 

  127. Wang, Y. et al. All natural, high efficient groundwater extraction via solar steam/vapor generation. Adv. Sustain. Syst. 3, 1800055 (2019).

    Google Scholar 

  128. Jia, C. et al. Rich mesostructures derived from natural woods for solar steam generation. Joule 1, 588–599 (2017).

    Google Scholar 

  129. Liu, K.-K. et al. Wood–graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 9, 7675–7681 (2017).

    CAS  Google Scholar 

  130. Chen, C. et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 29, 1701756 (2017).

    Google Scholar 

  131. Li, T. et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv. Funct. Mater. 28, 1707134 (2018).

    Google Scholar 

  132. Liu, H. et al. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J. Mater. Chem. A 6, 18839–18846 (2018).

    CAS  Google Scholar 

  133. Kuang, Y. et al. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31, 1900498 (2019).

    Google Scholar 

  134. He, S. et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12, 1558–1567 (2019).

    CAS  Google Scholar 

  135. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    CAS  Google Scholar 

  136. Kim, S. J., Ko, S. H., Kang, K. H. & Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 5, 297–301 (2010).

    CAS  Google Scholar 

  137. An, N., Fleming, A. M., White, H. S. & Burrows, C. J. Crown ether–electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc. Natl Acad. Sci. USA 109, 11504–11509 (2012).

    CAS  Google Scholar 

  138. Fan, R., Huh, S., Yan, R., Arnold, J. & Yang, P. Gated proton transport in aligned mesoporous silica films. Nat. Mater. 7, 303–307 (2008).

    CAS  Google Scholar 

  139. Chen, G. et al. A highly conductive cationic wood membrane. Adv. Funct. Mater. 29, 1902772 (2019).

    CAS  Google Scholar 

  140. Fink, S. Transparent wood–a new approach in the functional study of wood structure. Holzforschung 46, 403–408 (1992).

    CAS  Google Scholar 

  141. Li, Y., Fu, Q., Yu, S., Yan, M. & Berglund, L. Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromolecules 17, 1358–1364 (2016).

    CAS  Google Scholar 

  142. Zhu, M. et al. Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26, 332–339 (2016).

    CAS  Google Scholar 

  143. Li, Y. et al. Towards centimeter thick transparent wood through interface manipulation. J. Mater. Chem. A 6, 1094–1101 (2018).

    CAS  Google Scholar 

  144. Wu, J. et al. Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos. Part A Appl. Sci. Manuf. 117, 324–331 (2019).

    CAS  Google Scholar 

  145. Vasileva, E. et al. Light scattering by structurally anisotropic media: a benchmark with transparent wood. Adv. Opt. Mater. 6, 1800999 (2018).

    Google Scholar 

  146. Li, T. et al. Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 6, 1601122 (2016).

    Google Scholar 

  147. Yu, Z. et al. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J. Mater. Chem. A 5, 6019–6024 (2017).

    CAS  Google Scholar 

  148. Vasileva, E. et al. Lasing from organic dye molecules embedded in transparent wood. Adv. Opt. Mater. 5, 1700057 (2017).

    Google Scholar 

  149. Li, Y. et al. Luminescent transparent wood. Adv. Opt. Mater. 5, 1600834 (2017).

    Google Scholar 

  150. Gan, W. et al. Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ nanoparticle impregnation. ACS Sustain. Chem. Eng. 5, 3855–3862 (2017).

    CAS  Google Scholar 

  151. Gan, W. et al. Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template. J. Mater. Sci. 52, 3321–3329 (2017).

    CAS  Google Scholar 

  152. Qiu, Z. et al. Transparent wood bearing a shielding effect to infrared heat and ultraviolet via incorporation of modified antimony-doped tin oxide nanoparticles. Compos. Sci. Technol. 172, 43–48 (2019).

    CAS  Google Scholar 

  153. Zhang, T. et al. Flexible transparent sliced veneer for alternating current electroluminescent devices. ACS Sustain. Chem. Eng. 7, 11464–11473 (2019).

    CAS  Google Scholar 

  154. Jia, C. et al. Clear wood toward high-performance building materials. ACS Nano 13, 9993–10001 (2019).

    CAS  Google Scholar 

  155. Kawasaki, T. & Kawai, S. Thermal insulation properties of wood-based sandwich panel for use as structural insulated walls and floors. J. Wood Sci. 52, 75–83 (2006).

    Google Scholar 

  156. Cetiner, I. & Shea, A. D. Wood waste as an alternative thermal insulation for buildings. Energy Build. 168, 374–384 (2018).

    Google Scholar 

  157. Chen, L., Song, N., Shi, L. & Ding, P. Anisotropic thermally conductive composite with wood-derived carbon scaffolds. Compos. Part A Appl. Sci. Manuf. 112, 18–24 (2018).

    CAS  Google Scholar 

  158. Kuang, Y. et al. Bioinspired solar-heated carbon absorbent for efficient cleanup of highly viscous crude oil. Adv. Funct. Mater. 29, 1900162 (2019).

    Google Scholar 

  159. Wan, J. et al. Highly anisotropic conductors. Adv. Mater. 29, 1703331 (2017).

    Google Scholar 

  160. Ma, L., Wang, Q. & Li, L. Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage. Sol. Energy Mater. Sol. Cell 194, 215–221 (2019).

    CAS  Google Scholar 

  161. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    CAS  Google Scholar 

  162. Tian, L. et al. A radiative cooling structural material. Science 364, 760–763 (2019).

    Google Scholar 

  163. Dong, A. et al. Zeolitic tissue through wood cell templating. Adv. Mater. 14, 926–929 (2002).

    CAS  Google Scholar 

  164. Ye, R. et al. Laser-induced graphene formation on wood. Adv. Mater. 29, 1702211 (2017).

    Google Scholar 

  165. Yang, H. et al. Self-luminous wood composite for both thermal and light energy storage. Energy Storage Mater. 18, 15–22 (2019).

    CAS  Google Scholar 

  166. Hai, J., Chen, F., Su, J., Xu, F. & Wang, B. Porous wood members-based amplified colorimetric sensor for Hg2+ detection through Hg2+-triggered methylene blue reduction reactions. Anal. Chem. 90, 4909–4915 (2018).

    CAS  Google Scholar 

  167. Chen, C. et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem 4, 544–554 (2018).

    CAS  Google Scholar 

  168. Le, T.-S. D., Park, S., An, J., Lee, P. S. & Kim, Y.-J. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv. Funct. Mater. 29, 1902771 (2019).

    Google Scholar 

  169. Xi, J. et al. Wood-based straightway channel structure for high performance microwave absorption. Carbon 124, 492–498 (2017).

    CAS  Google Scholar 

  170. Yuan, Y. et al. Stiff, thermally stable and highly anisotropic wood-derived carbon composite monoliths for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9, 21371–21381 (2017).

    CAS  Google Scholar 

  171. Wang, Y. et al. A high-performance, low-tortuosity wood-carbon monolith reactor. Adv. Mater. 29, 1604257 (2017).

    Google Scholar 

  172. Tampieri, A. et al. From wood to bone: multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Chem. 19, 4973–4980 (2009).

    CAS  Google Scholar 

  173. Chen, C. et al. Catalyst-free in situ carbon nanotube growth in confined space via high temperature gradient. Research 2018, 1793784 (2018).

    Google Scholar 

  174. Li, Y. et al. In situ “Chainmail Catalyst” assembly in low-tortuosity, hierarchical carbon frameworks for efficient and stable hydrogen generation. Adv. Energy Mater. 8, 1801289 (2018).

    Google Scholar 

  175. Jakes, J. E. et al. Not just lumber—using wood in the sustainable future of materials, chemicals, and fuels. JOM 68, 2395–2404 (2016).

    CAS  Google Scholar 

  176. Burgert, I., Cabane, E., Zollfrank, C. & Berglund, L. Bio-inspired functional wood-based materials–hybrids and replicates. Int. Mater. Rev. 60, 431–450 (2015).

    CAS  Google Scholar 

  177. Stanzl-Tschegg, S. E. Wood as a bioinspiring material. Mater. Sci. Eng. C 31, 1174–1183 (2011).

    CAS  Google Scholar 

  178. Segmehl, J. S., Lauria, A., Keplinger, T., Berg, J. K. & Burgert, I. Tracking of short distance transport pathways in biological tissues by ultra-small nanoparticles. Front. Chem. 6, 28 (2018).

    Google Scholar 

  179. Merk, V., Berg, J. K., Krywka, C. & Burgert, I. Oriented crystallization of barium sulfate confined in hierarchical cellular structures. Cryst. Growth Des. 17, 677–684 (2017).

    CAS  Google Scholar 

  180. Gierlinger, N. & Schwanninger, M. Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant. Physiol. 140, 1246–1254 (2006).

    CAS  Google Scholar 

  181. Keplinger, T. et al. Smart hierarchical bio-based materials by formation of stimuli-responsive hydrogels inside the microporous structure of wood. Adv. Mater. Interfaces 3, 1600233 (2016).

    Google Scholar 

  182. Segmehl, J. S., Studer, V., Keplinger, T. & Burgert, I. Characterization of wood derived hierarchical cellulose scaffolds for multifunctional applications. Materials 11, 517 (2018).

    Google Scholar 

  183. Synge, E. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. London Edinburgh Dublin Philos. Mag. J. Sci. 6, 356–362 (1928).

    CAS  Google Scholar 

  184. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984).

    Google Scholar 

  185. Deckert-Gaudig, T., Taguchi, A., Kawata, S. & Deckert, V. Tip-enhanced Raman spectroscopy–from early developments to recent advances. Chem. Soc. Rev. 46, 4077–4110 (2017).

    CAS  Google Scholar 

  186. Sharma, G., Deckert-Gaudig, T. & Deckert, V. Tip-enhanced Raman scattering—Targeting structure-specific surface characterization for biomedical samples. Adv. Drug Deliv. Rev. 89, 42–56 (2015).

    CAS  Google Scholar 

  187. Keplinger, T. et al. A zoom into the nanoscale texture of secondary cell walls. Plant Methods 10, 1 (2014).

    Google Scholar 

  188. Fahlén, J. & Salmén, L. Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6, 433–438 (2005).

    Google Scholar 

  189. Casdorff, K., Keplinger, T., Rüggeberg, M. & Burgert, I. A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopy. Planta 247, 1123–1132 (2018).

    CAS  Google Scholar 

  190. Casdorff, K., Keplinger, T. & Burgert, I. Nano-mechanical characterization of the wood cell wall by AFM studies: comparison between AC-and QI™ mode. Plant Methods 13, 60 (2017).

    Google Scholar 

  191. Maire, E. X-ray tomography applied to the characterization of highly porous materials. Annu. Rev. Mater. Res. 42, 163–178 (2012).

    CAS  Google Scholar 

  192. Steppe, K. et al. Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. J. Struct. Biol. 148, 11–21 (2004).

    Google Scholar 

  193. Brodersen, C. R., Knipfer, T. & McElrone, A. J. In vivo visualization of the final stages of xylem vessel refilling in grapevine (Vitis vinifera) stems. New Phytol. 217, 117–126 (2018).

    CAS  Google Scholar 

  194. Zauner, M., Stampanoni, M. & Niemz, P. Failure and failure mechanisms of wood during longitudinal compression monitored by synchrotron micro-computed tomography. Holzforschung 70, 179–185 (2016).

    CAS  Google Scholar 

  195. Jakob, H., Fengel, D., Tschegg, S. & Fratzl, P. The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28, 8782–8787 (1995).

    CAS  Google Scholar 

  196. Färber, J., Lichtenegger, H., Reiterer, A., Stanzl-Tschegg, S. & Fratzl, P. Cellulose microfibril angles in a spruce branch and mechanical implications. J. Mater. Sci. 36, 5087–5092 (2001).

    Google Scholar 

  197. Entwistle, K. M., Eichhorn, S. J. & Navaranjan, N. The derivation of the cellulose microfibril angle by small-angle X-ray scattering from structurally characterized softwood cell-wall populations. J. Appl. Crystallogr. 38, 505–511 (2005).

    CAS  Google Scholar 

  198. Penttilä, P. A., Rautkari, L., Österberg, M. & Schweins, R. Small-angle scattering model for efficient characterization of wood nanostructure and moisture behaviour. J. Appl. Crystallogr. 52, 369–377 (2019).

    Google Scholar 

  199. Mansfield, S. D., Kim, H., Lu, F. & Ralph, J. Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protoc. 7, 1579–1589 (2012).

    CAS  Google Scholar 

  200. Bergenstråhle, M., Berglund, L. A. & Mazeau, K. Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J. Phys. Chem. B 111, 9138–9145 (2007).

    Google Scholar 

  201. Ciesielski, P. N. et al. Nanomechanics of cellulose deformation reveal molecular defects that facilitate natural deconstruction. Proc. Natl Acad. Sci. USA 116, 9825–9830 (2019).

    CAS  Google Scholar 

  202. Chen, P., Ogawa, Y., Nishiyama, Y., Ismail, A. E. & Mazeau, K. Iα to Iβ mechano-conversion and amorphization in native cellulose simulated by crystal bending. Cellulose 25, 4345–4355 (2018).

    CAS  Google Scholar 

  203. López, C. A. et al. MARTINI coarse-grained model for crystalline cellulose microfibers. J. Phys. Chem. B 119, 465–473 (2015).

    Google Scholar 

  204. Nairn, J. A. Numerical simulations of transverse compression and densification in wood. Wood Fiber Sci. 38, 576–591 (2007).

    Google Scholar 

  205. O’Loinsigh, C., Oudjene, M., Shotton, E., Pizzi, A. & Fanning, P. Mechanical behaviour and 3D stress analysis of multi-layered wooden beams made with welded-through wood dowels. Compos. Struct. 94, 313–321 (2012).

    Google Scholar 

  206. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J. & Nekrasov, V. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32, 76–84 (2015).

    CAS  Google Scholar 

  207. Fu, C. et al. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl Acad. Sci. USA 108, 3803–3808 (2011).

    CAS  Google Scholar 

  208. Yu, Z.-L. et al. Bioinspired polymeric woods. Sci. Adv. 4, eaat7223 (2018).

    CAS  Google Scholar 

  209. Zorzetto, L. & Ruffoni, D. Wood-inspired 3D-printed helical composites with tunable and enhanced mechanical performance. Adv. Funct. Mater. 29, 1805888 (2019).

    Google Scholar 

  210. Kobayashi, K., Akada, M., Torigoe, T., Imazu, S. & Sugiyama, J. Automated recognition of wood used in traditional Japanese sculptures by texture analysis of their low-resolution computed tomography data. J. Wood Sci. 61, 630–640 (2015).

    Google Scholar 

  211. Kobayashi, K., Hwang, S.-W., Okochi, T., Lee, W.-H. & Sugiyama, J. Non-destructive method for wood identification using conventional X-ray computed tomography data. J. Cult. Herit. 38, 88–93 (2019).

    Google Scholar 

  212. Barthelat, F., Yin, Z. & Buehler, M. J. Structure and mechanics of interfaces in biological materials. Nat. Rev. Mater. 1, 16007 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. H. Brozena for valuable comments on the manuscript and J. Dai for the helpful discussion on Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

L.H. and C.C. researched data for the manuscript. All authors made substantial contributions to the discussion of the content. C.C., L.H., Y.K., S.Z., I.B., T.K., T.L. and S.J.E. contributed to writing the manuscript. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Liangbing Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Kuang, Y., Zhu, S. et al. Structure–property–function relationships of natural and engineered wood. Nat Rev Mater 5, 642–666 (2020). https://doi.org/10.1038/s41578-020-0195-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-0195-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research