Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines

An Author Correction to this article was published on 14 May 2020

This article has been updated

Abstract

Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful d-block metal catalysts have been developed in recent years, but even binding of dinitrogen to an f-block metal cation is extremely rare. Here we report f-block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The activation, protonation and silylation of dinitrogen by M2(mTP)2 complexes 1 and 2.
Fig. 2: The structures of the rectangular metallacyclic complex 1, and the functionalized dinitrogen-containing complex 2.

Similar content being viewed by others

Data availability

The crystallographic datasets for the structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1829624 (1U), 1829625 (Ut-thf), 1829626 (1U-diox), 1829627 (1Th-diox), 1829628 (1Th-py), 1829629 (2U), 1829630 (3U), 1939159 (Th(Lt)2(THF)2), 1939157 (Th(LPh)2(py)2), 1939160 ([K(DME)]2[ThCl2(Lt)2]), 1940146 ([K(DME)]2[Th(OMe)2(Lt)2]), 1939874 ([K(DME)4]2[(µ-O){Th(LPh)2}2]), 1939158(U(L)2(THF)2), 1946809 ([K][U(OMe)(L)2]). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study and detailed experimental procedures and characterization of compounds are available in the Supplementary Information files, and in the depository https://doi.org/10.17632/nm46kr3cnd.1.

Change history

References

  1. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Kuriyama, S. Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum–dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand. J. Am. Chem. Soc. 136, 9719–9731 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Siedschlag, R. B. et al. Catalytic silylation of dinitrogen with a dicobalt complex. J. Am. Chem. Soc. 137, 4638–4641 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Gao, Y., Li, G. & Deng, L. Bis(dinitrogen)cobalt(−1) complexes with NHC ligation: synthesis, characterization, and their dinitrogen functionalization reactions affording side-on bound diazene complexes. J. Am. Chem. Soc. 140, 2239–2250 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Kendall, A. J., Johnson, S. I., Bullock, R. M. & Mock, M. T. Catalytic silylation of N2 and synthesis of NH3 and N2H4 by net hydrogen atom transfer reactions using a chromium P4 macrocycle. J. Am. Chem. Soc. 140, 2528–2536 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Doyle, L. R. et al. Catalytic dinitrogen reduction to ammonia at a triamidoamine–titanium complex. Angew. Chem. Int. Ed. 57, 6314–6318 (2018).

    Article  CAS  Google Scholar 

  8. Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 38, 955–962 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nishibayashi, Y. Development of catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Dalton Trans. 47, 11290–11297 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Morello, L., Love, J. B., Patrick, B. O. & Fryzuk, M. D. Carbon-nitrogen bond formation via the reaction of terminal alkynes with a dinuclear side-on dinitrogen complex. J. Am. Chem. Soc. 126, 9480–9481 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Bernskoetter, W. H., Pool, J. A., Lobkovsky, E. & Chirik, P. J. Dinitrogen functionalization with terminal alkynes, amines, and hydrazines promoted by[(η5-C5Me4H)2Zr]2222-N2): observation of side-on and end-on diazenido complexes in the reduction of N2 to hydrazine. J. Am. Chem. Soc. 127, 7901–7911 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Akagi, F., Matsuo, T. & Kawaguchi, H. Dinitrogen cleavage by a diniobium tetrahydride complex: formation of a nitride and its conversion into imide species. Angew. Chem. Int. Ed. 46, 8778–8781 (2007).

    Article  CAS  Google Scholar 

  14. Knobloch, D. J., Lobkovsky, E. & Chirik, P. J. Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex. Nat. Chem. 2, 30–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Ballmann, J., Yeo, A., Patrick, B. O. & Fryzuk, M. D. Carbon–nitrogen bond formation by the reaction of 1,2-cumulenes with a ditantalum complex containing side-on- and end-on-bound dinitrogen. Angew. Chem. Int. Ed. 50, 507–510 (2011).

    Article  CAS  Google Scholar 

  16. Ishida, Y. & Kawaguchi, H. Nitrogen atom transfer from a dinitrogen-derived vanadium nitride complex to carbon monoxide and isocyanide. J. Am. Chem. Soc. 136, 16990–16993 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Nakanishi, Y., Ishida, Y. & Kawaguchi, H. Nitrogen–carbon bond formation by reactions of a titanium–potassium dinitrogen complex with carbon dioxide, tert-butyl isocyanate, and phenylallene. Angew. Chem. Int. Ed. 56, 9193–9197 (2017).

    Article  CAS  Google Scholar 

  18. Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron–potassium complex. Science 334, 780–783 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McWilliams, S. F. & Holland, P. L. Dinitrogen binding and cleavage by multinuclear iron complexes. Acc. Chem. Res. 48, 2059–2065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. MacLeod, K. C. et al. Alkali-controlled C–H cleavage or N–C bond formation by N2-derived iron nitrides and imides. J. Am. Chem. Soc. 138, 11185–11191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burford, R. J. & Fryzuk, M. D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem. 1, 0026 (2017).

    Article  CAS  Google Scholar 

  22. Ferreira, R. B. et al. Catalytic silylation of dinitrogen by a family of triiron complexes. ACS Catal. 8, 7208–7212 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Turner, Z. Molecular pnictogen activation by rare earth and actinide complexes. Inorganics 3, 597–635 (2015).

    Article  CAS  Google Scholar 

  24. LaPierre, H. S. & Meyer, K. Activation of small molecules by molecular uranium complexes. Prog. Inorg. Chem. 58, 303–416 (2014).

    CAS  Google Scholar 

  25. Roussel, P. & Scott, P. Complex of dinitrogen with trivalent uranium. J. Am. Chem. Soc. 120, 1070–1071 (1998).

    Article  CAS  Google Scholar 

  26. Odom, A. L., Arnold, P. L. & Cummins, C. C. Heterodinuclear uranium/molybdenum dinitrogen complexes. J. Am. Chem. Soc. 120, 5836–5837 (1998).

    Article  CAS  Google Scholar 

  27. Cloke, F. G. N. & Hitchcock, P. B. Reversible binding and reduction of dinitrogen by a uranium(III) pentalene complex. J. Am. Chem. Soc. 124, 9352–9353 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Evans, W. J., Kozimor, S. A. & Ziller, J. W. A monometallic f element complex of dinitrogen:(C5Me5)3U(η-N2). J. Am. Chem. Soc. 125, 14264–14265 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Mansell, S. M., Kaltsoyannis, N. & Arnold, P. L. Small molecule activation by uranium tris(aryloxides): experimental and computational studies of binding of N2, coupling of CO, and deoxygenation insertion of CO2 under ambient conditions. J. Am. Chem. Soc. 133, 9036–9051 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Mansell, S. M., Farnaby, J. H., Germeroth, A. I. & Arnold, P. L. Thermally stable uranium dinitrogen complex with siloxide supporting ligands. Organometallics 32, 4214–4222 (2013).

    Article  CAS  Google Scholar 

  31. Lu, E. et al. Back-bonding between an electron-poor, high-oxidation-state metal and poor π-acceptor ligand in a uranium(v)–dinitrogen complex. Nat. Chem. 11, 806–811 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Mittasch, A. Geschichte der Ammoniaksynthese (Verlag Chemie, 1951).

  33. Falcone, M. et al. The role of bridging ligands in dinitrogen reduction and functionalization by uranium multimetallic complexes. Nat. Chem. 11, 154–160 (2018).

    Article  PubMed  CAS  Google Scholar 

  34. Falcone, M., Chatelain, L., Scopelliti, R., Živković, I. & Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 547, 332–335 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Korobkov, I., Gambarotta, S. & Yap, G. P. A. A highly reactive uranium complex supported by the calix[4]tetrapyrrole tetraanion affording dinitrogen cleavage, solvent deoxygenation, and polysilanol depolymerization. Angew. Chem. Int. Ed. 41, 3433–3436 (2002).

    Article  CAS  Google Scholar 

  36. Langeslay, R. R., Fieser, M. E., Ziller, J. W., Furche, F. & Evans, W. J. Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C5H3(SiMe3)2]3Th}1− anion containing thorium in the formal +2 oxidation state. Chem. Sci. 6, 517–521 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Korobkov, I., Gambarotta, S. & Yap, G. P. A. Amide from dinitrogen by in situ cleavage and partial hydrogenation promoted by a transient zero-valent thorium synthon. Angew. Chem. Int. Ed. 42, 4958–4961 (2003).

    Article  CAS  Google Scholar 

  38. Wells, J. A. L., Seymour, M. L., Suvova, M. & Arnold, P. L. Dinuclear uranium complexation and manipulation using robust tetraaryloxides. Dalton Trans. 45, 16026–16032 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Halter, D. P., Heinemann, F. W., Maron, L. & Meyer, K. The role of uranium–arene bonding in H2O reduction catalysis. Nat. Chem 10, 259 (2017).

    Article  PubMed  CAS  Google Scholar 

  40. Evans, W. J., Rego, D. B. & Ziller, J. W. Synthesis, structure, and 15N NMR studies of paramagnetic lanthanide complexes obtained by reduction of dinitrogen. Inorg. Chem. 45, 10790–10798 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Cordero, B. et al. Covalent radii revisited. Dalton Trans. 2832–2838 (2008).

  42. MacLeod, K. C., McWilliams, S. F., Mercado, B. Q. & Holland, P. L. Stepwise N–H bond formation from N2-derived iron nitride, imide and amide intermediates to ammonia. Chem. Sci. 7, 5736–5746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Markus, R., Oliver, S., Dieter, S. & Artur, H. B. Dinuclear diazene iron and ruthenium complexes as models for studying nitrogenase activity. Chem. Eur. J. 7, 5195–5202 (2001).

    Article  Google Scholar 

  44. Chalkley, M. J., Del Castillo, T. J., Matson, B. D., Roddy, J. P. & Peters, J. C. Catalytic N2-to-NH3 conversion by Fe at lower driving force: a proposed role for metallocene-mediated PCET. ACS Cent. Sci. 3, 217–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zell, T. & Milstein, D. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal–ligand cooperation by aromatization/dearomatization. Acc. Chem. Res. 48, 1979–1994 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Al-Khafaji, Y., Sun, X., Prior, T. J., Elsegood, M. R. J. & Redshaw, C. Tetraphenolate niobium and tantalum complexes for the ring opening polymerization of ε-caprolactone. Dalton Trans. 44, 12349–12356 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Tang, L. et al. Highly active catalysts for the ring-opening polymerization of ethylene oxide and propylene oxide based on products of alkylaluminum compounds with bulky tetraphenol ligands. Macromolecules 41, 7306–7315 (2008).

    Article  CAS  Google Scholar 

  48. Keane, A. J., Farrell, W. S., Yonke, B. L., Zavalij, P. Y. & Sita, L. R. Metal-mediated production of isocyanates, R3EN=C=O from dinitrogen, carbon dioxide, and R3ECl. Angew. Chem. Int. Ed. 54, 10220–10224 (2015).

    Article  CAS  Google Scholar 

  49. Liao, Q., Saffon-Merceron, N. & Mézailles, N. Catalytic dinitrogen reduction at the molybdenum center promoted by a bulky tetradentate phosphine ligand. Angew. Chem. Int. Ed. 53, 14206–14210 (2014).

    Article  CAS  Google Scholar 

  50. Liao, Q., Saffon-Merceron, N. & Mézailles, N. N2 reduction into silylamine at tridentate phosphine/Mo center: catalysis and mechanistic study. ACS Catal. 5, 6902–6906 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Edinburgh, the EPSRC, the JSPS and the ERC for funding.

Author information

Authors and Affiliations

Authors

Contributions

T.O., F.Y.T.L., R.P.K. and M.L.S. carried out the experiments. L.M. carried out and analysed the DFT calculations. P.L.A. conceived and supervised the project. All authors analysed the data and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Polly L. Arnold.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs.1–41, Tables 1 and 2, refs. 1–6, optimized structures, Cartesian coordinates for the optimized structures, Raman data, UV–vis data and GC-MS data.

Crystallographic data

Crystallographic data for 1U. CCDC reference 1829624.

Crystallographic data

Crystallographic data for 1Ut-thf. CCDC reference 1829625.

Crystallographic data

Crystallographic data for 1U-diox. CCDC reference 1829626.

Crystallographic data

Crystallographic data for 1Th-diox. CCDC reference 1829627.

Crystallographic data

Crystallographic data for 1Th-py. CCDC reference 1829628.

Crystallographic data

Crystallographic data for 2U. CCDC reference 1829629.

Crystallographic data

Crystallographic data for 3U. CCDC reference 1829630.

Crystallographic data

Crystallographic data for Th(Lt)2(THF)2. CCDC reference 1939159.

Crystallographic data

Crystallographic data for Th(LPh)2(py)2. CCDC reference 1939157.

Crystallographic data

Crystallographic data for [K(DME)]2[ThCl2(Lt)2]. CCDC reference 1939160.

Crystallographic data

Crystallographic data for [K(DME)]2[Th(OMe)2(Lt)2]. CCDC reference 1940146.

Crystallographic data

Crystallographic data for [K(DME)4]2[(µ-O){Th(LPh)2}2]. CCDC reference 1939874.

Crystallographic data

Crystallographic data for U(L)2(THF)2. CCDC reference 1939158.

Crystallographic data

Crystallographic data for [K][U(OMe)(L)2]. CCDC reference 1946809.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnold, P.L., Ochiai, T., Lam, F.Y.T. et al. Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines. Nat. Chem. 12, 654–659 (2020). https://doi.org/10.1038/s41557-020-0457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0457-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing