Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for selectivity in a highly reducing type II polyketide synthase

Abstract

In type II polyketide synthases (PKSs), the ketosynthase–chain length factor (KS–CLF) complex catalyzes polyketide chain elongation with the acyl carrier protein (ACP). Highly reducing type II PKSs, represented by IgaPKS, produce polyene structures instead of the well-known aromatic skeletons. Here, we report the crystal structures of the Iga11–Iga12 (KS–CLF) heterodimer and the covalently cross-linked Iga10=Iga11–Iga12 (ACP=KS–CLF) tripartite complex. The latter structure revealed the molecular basis of the interaction between Iga10 and Iga11–Iga12, which differs from that between the ACP and KS of Escherichia coli fatty acid synthase. Furthermore, the reaction pocket structure and site-directed mutagenesis revealed that the negative charge of Asp 113 of Iga11 prevents further condensation using a β-ketoacyl product as a substrate, which distinguishes IgaPKS from typical type II PKSs. This work will facilitate the future rational design of PKSs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The reaction catalyzed by IgaPKS and overall structures of Iga11–Iga12 in three different states.
Fig. 2: Interaction between Iga11–Iga12 and Iga10.
Fig. 3: The reaction pocket structure of C8Cl-Iga10=Iga11–Iga12.
Fig. 4: The proposed mechanism of the reaction catalyzed by Iga11–Iga12.

Similar content being viewed by others

Data availability

Structures have been deposited at the Protein Data Bank under accession codes 6KXD (Iga11–Iga12), 6KXE (C6=Iga11–Iga12) and 6KXF (C8Cl-Iga10=Iga11–Iga12).

References

  1. Klaus, M. & Grininger, M. Engineering strategies for rational polyketide synthase design. Nat. Prod. Rep. 35, 1070–1081 (2018).

    Article  CAS  Google Scholar 

  2. Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  Google Scholar 

  3. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009).

    Article  CAS  Google Scholar 

  4. Hertweck, C., Luzhetskyy, A., Rebets, Y. & Bechthold, A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 24, 162–190 (2007).

    Article  CAS  Google Scholar 

  5. Das, A. & Khosla, C. Biosynthesis of aromatic polyketides in bacteria. Acc. Chem. Res. 42, 631–639 (2009).

    Article  CAS  Google Scholar 

  6. Tsai, S.-C. The structural enzymology of iterative aromatic polyketide synthases: a critical comparison with fatty acid synthases. Annu. Rev. Biochem. 87, 503–531 (2018).

    Article  CAS  Google Scholar 

  7. Dreier, J. & Khosla, C. Mechanistic analysis of a type II polyketide synthase. Role of conserved residues in the β-ketoacyl synthase-chain length factor heterodimer. Biochemistry 39, 2088–2095 (2000).

    Article  CAS  Google Scholar 

  8. Du, D. et al. Production of a novel amide-containing polyene by activating a cryptic biosynthetic gene cluster in Streptomyces sp. MSC090213JE08. ChemBioChem 17, 1464–1471 (2016).

    Article  CAS  Google Scholar 

  9. Du, D., Katsuyama, Y., Shin-Ya, K. & Ohnishi, Y. Reconstitution of a type II polyketide synthase that catalyzes polyene formation. Angew. Chem. Int. Ed. Engl. 57, 1954–1957 (2018).

    Article  CAS  Google Scholar 

  10. Grammbitter, G. L. C. et al. An uncommon type II PKS catalyzes biosynthesis of aryl polyene pigments. J. Am. Chem. Soc. 141, 16615–16623 (2019).

    Article  CAS  Google Scholar 

  11. Keatinge-Clay, A. T., Maltby, D. A., Medzihradszky, K. F., Khosla, C. & Stroud, R. M. An antibiotic factory caught in action. Nat. Struct. Mol. Biol. 11, 888–893 (2004).

    Article  CAS  Google Scholar 

  12. Shen, H. C. et al. Synthesis and biological evaluation of platensimycin analogs. Bioorg. Med. Chem. Lett. 19, 1623–1627 (2009).

    Article  CAS  Google Scholar 

  13. Trajtenberg, F. et al. Structural insights into bacterial resistance to cerulenin. FEBS J. 281, 2324–2338 (2014).

    Article  CAS  Google Scholar 

  14. Wang, J. et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441, 358–361 (2006).

    Article  CAS  Google Scholar 

  15. Nanson, J. D., Himiari, Z., Swarbrick, C. M. D. & Forwood, J. K. Structural characterisation of the beta-ketoacyl-acyl carrier protein synthases, FabF and FabH, of Yersinia pestis. Sci. Rep. 5, 14797 (2015).

    Article  CAS  Google Scholar 

  16. Zhang, Y.-M., Hurlbert, J., White, S. W. & Rock, C. O. Roles of the active site water, histidine 303, and phenylalanine 396 in the catalytic mechanism of the elongation condensing enzyme of Streptococcus pneumoniae. J. Biol. Chem. 281, 17390–17399 (2006).

    Article  CAS  Google Scholar 

  17. Moche, M., Schneider, G., Edwards, P., Dehesh, K. & Lindqvist, Y. Structure of the complex between the antibiotic cerulenin and its target, β-ketoacyl-acyl carrier protein synthase. J. Biol. Chem. 274, 6031–6034 (1999).

    Article  CAS  Google Scholar 

  18. Finzel, K., Lee, D. J. & Burkart, M. D. Using modern tools to probe the structure-function relationship of fatty acid synthases. Chembiochem 16, 528–547 (2015).

    Article  CAS  Google Scholar 

  19. Crosby, J. & Crump, M. P. The structural role of the carrier protein–active controller or passive carrier. Nat. Prod. Rep. 29, 1111–1137 (2012).

    Article  CAS  Google Scholar 

  20. Shakya, G. et al. Modeling linear and cyclic PKS intermediates through atom replacement. J. Am. Chem. Soc. 136, 16792–16799 (2014).

    Article  CAS  Google Scholar 

  21. Chen, A., Re, R. N. & Burkart, M. D. Type II fatty acid and polyketide synthases: deciphering protein-protein and protein-substrate interactions. Nat. Prod. Rep. 35, 1029–1045 (2018).

    Article  CAS  Google Scholar 

  22. Miyanaga, A., Iwasawa, S., Shinohara, Y., Kudo, F. & Eguchi, T. Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis. Proc. Natl Acad. Sci. USA 113, 1802–1807 (2016).

    Article  CAS  Google Scholar 

  23. Miyanaga, A. et al. Structural basis of protein-protein interactions between a trans-acting acyltransferase and acyl carrier protein in polyketide disorazole biosynthesis. J. Am. Chem. Soc. 140, 7970–7978 (2018).

    Article  CAS  Google Scholar 

  24. Nguyen, C. et al. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis. Nature 505, 427–431 (2014).

    Article  CAS  Google Scholar 

  25. Milligan, J. C. et al. Molecular basis for interactions between an acyl carrier protein and a ketosynthase. Nat. Chem. Biol. 15, 669–671 (2019).

    Article  CAS  Google Scholar 

  26. Dodge, G. J. et al. Structural and dynamical rationale for fatty acid unsaturation in Escherichia coli. Proc. Natl Acad. Sci. USA 116, 6775–6783 (2019).

    Article  CAS  Google Scholar 

  27. Herbst, D. A. et al. The structural organization of substrate loading in iterative polyketide synthases. Nat. Chem. Biol. 14, 474–479 (2018).

    Article  CAS  Google Scholar 

  28. Worthington, A. S., Rivera, H., Torpey, J. W., Alexander, M. D. & Burkart, M. D. Mechanism-based protein cross-linking probes to investigate carrier protein-mediated biosynthesis. ACS Chem. Biol. 1, 687–691 (2006).

    Article  CAS  Google Scholar 

  29. Worthington, A. S. & Burkart, M. D. One-pot chemo-enzymatic synthesis of reporter-modified proteins. Org. Biomol. Chem. 4, 44–46 (2006).

    Article  CAS  Google Scholar 

  30. Clarke, K. M., Mercer, A. C., La Clair, J. J. & Burkart, M. D. In vivo reporter labeling of proteins via metabolic delivery of coenzyme A analogues. J. Am. Chem. Soc. 127, 11234–11235 (2005).

    Article  CAS  Google Scholar 

  31. Haushalter, R. W., Worthington, A. S., Hur, G. H. & Burkart, M. D. An orthogonal purification strategy for isolating crosslinked domains of modular synthases. Bioorg. Med. Chem. Lett. 18, 3039–3042 (2008).

    Article  CAS  Google Scholar 

  32. Worthington, A. S. et al. Probing the compatibility of type II ketosynthase-carrier protein partners. Chembiochem 9, 2096–2103 (2008).

    Article  CAS  Google Scholar 

  33. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  34. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  Google Scholar 

  35. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).

    Article  CAS  Google Scholar 

  36. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    Article  CAS  Google Scholar 

  37. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  38. Vagin, A. A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 (2004).

    Article  Google Scholar 

  39. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  40. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Harada and M. Senda, and the staff of the Photon Factory and Swiss Light Source (proposal number 2017G165) for the X-ray data collection. The research is supported by Grants-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan (JP18H02144 and JP19H04645 to Y.K.), a Research Fellow Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS; JP17J09439, to D.D.), JSPS A3 Foresight Program grant (to Y.O.), NIH R01 grant GM095970 to M.D.B. and NIH K12 GM068524 grant, to T.D.D. (San Diego IRACDA Postdoctoral Fellow).

Author information

Authors and Affiliations

Authors

Contributions

Y.K., M.D.B. and D.D. designed the research. T.D.D. synthesized the chemical probes. The crystallization of the proteins was done by D.D. The X-ray diffraction experiment was carried out by Y.K. and D.D. The experimental phasing was done by Y.K. Refinement and validation of the structure was done by D.D., Y.K. and S.F. Site-directed mutagenesis and analysis of mutants were done by D.D. and M.H. The cross-linked complex was prepared by D.D. and A.C. D.D. and Y.K. wrote the draft manuscript. A.C., T.D.D., M.D.B., S.F. and Y.O. commented on the draft. Y.K. and Y.O. finalized the manuscript and all authors approved it. Y.K., M.D.B. and Y.O. directed the research.

Corresponding authors

Correspondence to Yohei Katsuyama or Michael D. Burkart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental Information

Supplementary Figs. 1–14 and Tables 1–4.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, D., Katsuyama, Y., Horiuchi, M. et al. Structural basis for selectivity in a highly reducing type II polyketide synthase. Nat Chem Biol 16, 776–782 (2020). https://doi.org/10.1038/s41589-020-0530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0530-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing