Skip to main content
Log in

Hippophae rhamnoides L. rhizobacteria exhibit diversified cellulase and pectinase activities

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Hippophae rhamnoides L. provides an enormous range of medicinal and nutritional benefits. The significant abilities of this plant to survive in Himalayan high altitudes enticed our study to investigate its rhizosphere. Seventeen rhizobacterial strains were isolated from the rhizospheric soil and plant root nodules, belonging to genus Frankia, Azorhizobium, Bacillus, Paenibacillus, Brevibacillus and Pseudomonas, as identified by 16SrRNA sequencing. This varying bacterial population was further examined for the presence of root degrading enzymes pectinase and cellulase, which enable them to intrude the plant roots. Based on the growth and substrate utilization by these rhizobacteria on pectinase screening agar medium and Mandels and Reese agar medium, all the seventeen strains were identified as pectinase and cellulase producing rhizobacteria. The quantitative analysis by DNS method demonstrated varying enzyme activities, spot-lighting the physiological variation in the microbiome. The divergence in the enzyme activities shown by all the strains was analysed statistically, using the software ASSISTAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PSAM:

Pectinase screening agar medium

MRAM:

Mandels and Reese agar medium

PGPR:

Plant growth promoting rhizobacteria

IAA:

Indole acetic acid

CLEA:

Cross-linked enzyme aggregates

DNS:

Di-nitrosalicylic acid

References

  • Agah MV, Orji JO, Nnachi AU, Chukwu OS, Udu-Ibiam OE, Nwachi AC, Olaosebikan OO (2016) Isolation and identification of Rhizobium species from root nodules of Arachis hypogaea L. and Telfairia occidentalis in south-east Nigeria. Int J Sci Res 5(6):227–230

    Google Scholar 

  • Agrawal DPK, Agrawal S (2013) Characterization of Bacillus sp. strains isolated from rhizosphere of tomato plants (Lycopersicon esculentum) for their use as potential plant growth promoting rhizobacteria. Int J Curr Microbiol Appl Sci 2(10):406–417

    Google Scholar 

  • Akhtar A, Hisamuddin RHI, Abbasi SR (2012) Plant growth promoting rhizobacteria: an overview. J Nat Prod Plant Resour 2(1):19–31

    Google Scholar 

  • Apastambh AR, Tanveer K, Baig MMV (2016) Isolation and characterization of plant growth promoting rhizobacteria from banana rhizosphere. Int J Curr Microbiol Appl Sci 5(2):59–65

    Article  CAS  Google Scholar 

  • Azlan A, Aweng ER, Ibrahim CO, Noorhaidah A (2012) Correlation between soil organic matter, total organic matter and water content with climate and depths of soil at different land use in Kelantan, Malaysia. J Appl Sci Environ Manag 16(4):353–358

    CAS  Google Scholar 

  • Baeucehmin NJ, Furnholm T, Lavenus J, Svistoonoff S, Doumas P, Bogusz D, Laplaze L, Tisa LS (2012) Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3. Appl Environ Microbiol 78(2):575–580

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bissonnette C, Fahlman B, Peru KM, Khasa DP, Greer CW, Headley JV, Roy S (2014) Symbiosis with Frankia sp. benefits the establishment of Alnus viridis sp. crispa and Alnus incana sp. rugosa in tailings sand from the Canadian oil sands industry. Ecol Eng 68:167–175

    Article  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance. Microbiol Res 164(5):493–513

    Article  CAS  PubMed  Google Scholar 

  • Dantur KI, Enrique R, Welin B, Castagnaro AP (2015) Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 5(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deshwal VK, Kumar P (2013) Production of plant growth promoting substance by Pseudomonads. J Acad Ind Res 2(4):221–225

    Google Scholar 

  • Dominguez-Nunez JA, Munoz D, de la Cruz A, de Omenaca JLS (2013) Effects of Pseudomonas fluorescens on the water parameters of mycorrhizal and non-mycorrhizal seedlings of Pinus halepensis. Agronomy 3:571–582

    Article  Google Scholar 

  • Echbab H, Arahou M, Ducousso M, Nourissier-Mountou S, Duponnois R, Lahlou H, Prin Y (2007) Successful nodulation of Casuarina by Frankia in axenic conditions. J Appl Microbiol 103:1728–1737

    Article  CAS  PubMed  Google Scholar 

  • Franzetti L, Scarpellini M (2007) Characterisation of Pseudomonas spp. isolated from foods. Ann Microbiol 57(1):39–47

    Article  CAS  Google Scholar 

  • Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R (2016) Microbial pectinases: an eco-friendly tool of nature for industries. Biotech 6:47

    CAS  Google Scholar 

  • Gentili F, Wall LG, Huss-Danell K (2006) Effects of phosphorus and nitrogen on nodulation are seen already at the stage of early cortical cell divisions in Alnus incana. Ann Bot 98:309–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC, Moral MT (2016) Portraying mechanics of plant growth promoting rhizobacteria. Cogent Food Agric 2:1

    Google Scholar 

  • Gowsalya V, Ponnusami S, Sugumaran KR (2014) Isolation of bacteria from soil sample for exopolysaccharide production. Int J Chem Tech Res 6(5):2925–2928

    Google Scholar 

  • Grady EN, MacDonald J, Liu L, Richman A, Yuan Z (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregory TR (2008) Understanding evolutionary trees. Evol Educ Outreach 1:121–137

    Article  Google Scholar 

  • Gtari M, Brusetti L, Skander G, Mora D, Boudabous A, Daffonchio D (2004) Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. FEMS Microbiol Lett 234:349–355

    Article  CAS  PubMed  Google Scholar 

  • Haling RE, Brown LK, Bengough AG, Young IM, Hallett PD, White PJ, George TS (2013) Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. J Exp Bot 64:3711–3721

    Article  CAS  PubMed  Google Scholar 

  • Hseu ZY (2004) Evaluating heavy metal contents in nine composts using four digestion methods. Bioresour Technol 95:53–59

    Article  CAS  PubMed  Google Scholar 

  • Huang XF, Zhou D, Guo J, Manter DK, Reardon KF, Vivanco JM (2015) Bacillus sp. from rainforest soil promote plant growth under limited nitrogen conditions. J Appl Microbiol 118:672–684

    Article  CAS  PubMed  Google Scholar 

  • Iqbal A, Hasnain S (2013) Auxin producing Pseudomonas Strains: biological candidates to modulate the growth of Triticum aestivum beneficially. Am J Plant Sci 4:1693–1700

    Article  CAS  Google Scholar 

  • Joe MM, Sivakumaar PK (2009) Long term survivability of Azospirillum co-aggregates: bioinoculation effect on the growth and yield of sunflower. Agricultura 6:71–77

    Google Scholar 

  • Karthikeyan A, Chandrasekaran K, Geetha M, Kalaiselvi R (2013) Growth response of Casuarina equisetifolia Forst. rooted stem cuttings to Frankia in nursery and field conditions. J Biosci 38(4):741–747

    Article  CAS  PubMed  Google Scholar 

  • Kashyap DR, Chandra S, Kaul A, Tewari R (2000) Production, purification and characterization of pectinase from a Bacillus sp. DT7. World J Microbiol Biotechnol 16:277

    Article  CAS  Google Scholar 

  • Kaur S, Kaur HP, Prasad B, Bharti T (2016) Production and optimization of pectinase by Bacillus sp. isolated from vegetable waste soil. Indo Am J Pharm Res 6(01):4185–4190

    CAS  Google Scholar 

  • Kefela T, Gachomo EW, Kotchoni SO (2015) Paenibacillus polymyxa, Bacillus licheniformis and Bradyrhizobium japonicum IRAT FA3 promote faster seed germination rate, growth and disease resistance under pathogenic pressure. J Plant Biochem Physiol 3:145

    Google Scholar 

  • Khatiwada P, Ahmed J, Sohag MH, Islam K, Azad AK (2016) Isolation, screening and characterization of cellulase producing bacterial isolates from municipal solid wastes and rice straw wastes. J Bioprocess Biotech 6:280

    Google Scholar 

  • Khianngam S, Pootaengon Y, Techakriengkrai T, Tanasupawat S (2014) Screening and identification of cellulase producing bacteria isolated from oil palm meal. J Appl Pharm Sci 4(04):90–96

    CAS  Google Scholar 

  • Kumar A, Kumar A, Pratush A (2014) Molecular diversity and functional variability of environmental isolates of Bacillus species. SpringerPlus 3(1):312

    Google Scholar 

  • Kumar PKR, Hemanth G, Niharika PS, Kolli SK (2015) Isolation and identification of soil mycoflora in agricultural fields at Tekkali Mandal in Srikakulam district. Int J Adv Pharm Biol Chem 4(2):484–490

    CAS  Google Scholar 

  • Liang TW, Tseng SC, Wang SL (2016) Production and characterization of antioxidant properties of exopolysaccharide(s) from Peanibacillus mucilaginosus TKU032. Mar Drugs 14(2):40

    Article  PubMed Central  CAS  Google Scholar 

  • Mastronunzio JE, Tisa LS, Normand P, Benson DR (2008) Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts. BMC Genomics 9:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menendez E, Bahena MHR, Fabryova A, Igual JM, Benada O, Mateos PF, Peix A, Kolarik M, Fraile PG (2015) Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int J Syst Evol Microbiol 65:2852–2858

    Article  CAS  PubMed  Google Scholar 

  • Przemieniecki SW, Kurowski TP, Karwowska A (2015) Plant growth promoting potential of Pseudomonas sp. sp0113 isolated from potable water from a closed water well. Arch Biol Sci 67(2):663–673

    Article  Google Scholar 

  • Raja S, Subhashini P, Thangaradjou T (2016) Differential methods of localization of fungal endophytes in the seagrasses. Mycology 7(3):112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayavarapu VGB, Padmavathi T (2016) Bacillus sp. as potential plant growth promoting rhizobacteria. Int J Adv Life Sci 9(1):29–36

    CAS  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 2010:1–12

    Google Scholar 

  • Rybakova D, Cernava T, Koberl M, Liebminger S, Etemadi M, Berg G (2015) Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil 405:125–140. https://doi.org/10.1007/s11104-015-2526-1

    Article  CAS  Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3(3):235–258

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Rapid isolation of yeast DNA. Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, New York, pp 631–632

    Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR (2016) Plant growth promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Dalal S, Gupta MN (2007) A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities. Chem Cent J 1(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silva FAS, Azevedo CAV (2016) The Assistat Software Version 7.7 and its uses in the analysis of experimental data. Afr J Agric Res 11(39):3733–3740

    Article  Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res 9(16):1265–1277

    Google Scholar 

  • Slack SM, Zeng Q, Outwater CA, Sundin GW (2017) Microbiological examination of Erwinia amylovora exopolysaccharide ooze. Phytopathology 107:403–411

    Article  CAS  PubMed  Google Scholar 

  • Spohn M, Kuzyakov Y (2013) Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem 61:69–75

    Article  CAS  Google Scholar 

  • Tanaka N, Kato M, Tomioka R, Kurata R, Fukao Y, Aoyama T, Maeshima M (2014) Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses. J Exp Bot 65:1497–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torimiro N, Okonji RE (2013) A comparative study of pectinolytic enzyme production by Bacillus species. Afr J Biotechnol 12(46):6498–6503

    Article  CAS  Google Scholar 

  • Ulrich A, Klimke G, Wirth S (2008) Diversity and activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application. Microb Ecol 55:512–522

    Article  PubMed  Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Wanmolee W, Sornlake W, Rattanaphan N, Suwarnnarangsee S, Laosiripojana N, Champreda V (2016) Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosumon rice straw saccharification. BMV Biotechnol 16:82

    Google Scholar 

  • Weselowski B, Nathoo N, Eastman AW, MacDonald J, Yuan Z (2016) Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol 16:244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo HL, Hazen TC, Simmons BA, DeAngelis KA (2014) Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol 37:60–67

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joginder Singh or Manoj Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadrecha, P., Bala, M., Khasa, Y.P. et al. Hippophae rhamnoides L. rhizobacteria exhibit diversified cellulase and pectinase activities. Physiol Mol Biol Plants 26, 1075–1085 (2020). https://doi.org/10.1007/s12298-020-00778-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00778-2

Keywords

Navigation