Skip to main content
Log in

Electromagnetically induced grating with second field quantization in spherical semiconductor quantum dots

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A new approach for diffracting the weak probe beam into higher-order directions is proposed via electromagnetically induced grating in second field quantization formalism, offering a new way for implementations of quantum information with semiconductor quantum dots. The formalism of second field quantization allows describing atoms and photons as a many-body system. An induced diffraction grating is formed based on the electromagnetic induced transparency when a standing-wave coupling field is applied to a spherical quantum dot as a three-level system. Due to phase modulation, the zeroth-order light intensity becomes weak, and the first-order diffraction is improved affectedly. On the contrary, the probe beam is barely diffracted via absorption modulation. The simulation results verify that photon numbers of probe and control fields, as well as other parameters in the QD, can lead to the diffraction efficiency of phase grating to be improved. Phase diffraction grating accompanied with a high transmissivity is demonstrated, and the first-order diffraction efficiency reaches \(30\%\). Also, the impact of QD dimensions on its optical response is investigated. This model may find potential applications in designing the semiconductor quantum dot-based photonic devices in optical communications and quantum information networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal, G.S., Huang, S.: Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes. New J. Phys. 16, 033023 (2014)

    Article  ADS  Google Scholar 

  • Antón, M.A., Calderón, O.G., Carreño, F.: Optical bistability in V-type atoms driven by a coherent field in a broadband squeezed vacuum. Phys. Lett. A 311, 297–312 (2003)

    Article  ADS  Google Scholar 

  • Banyai, L., Koch, S.W.: Semiconductor Quantum Dots. World Scientific Publishing Co. Pte. Ltd, Singapore (1993)

    Book  Google Scholar 

  • Barettin, D., Houmark, J., Lassen, B., Willatzen, M., Nielsen, T.R., Mørk, J., Jauho, A.-P.: Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures. Phys. Rev. B 80, 235304 (2009)

    Article  ADS  Google Scholar 

  • Deng, L., Payne, M.G., Garrett, W.R.: Electromagnetically-induced-transparency-enhanced Kerr nonlinearity: beyond steady-state treatment. Phys. Rev. A 64, 023807 (2001)

    Article  ADS  Google Scholar 

  • Doi, M.: Second quantization representation for classical many-particle system. J. Phys. A Math. Gen. 9(9), 1465 (1976)

    Article  ADS  Google Scholar 

  • Heinze, G., Hubrich, Ch., Halfmann, T.: Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. 111, 033601 (2013)

    Article  ADS  Google Scholar 

  • Huang, S., Agarwal, G.S.: Electromagnetically induced transparency with quantized fields in optocavity mechanics. Phys. Rev. A 83, 043826 (2011)

    Article  ADS  Google Scholar 

  • Kang, H., Kim, J.S., Hwang, S.I., Park, Y.H., Ko, D.K., Lee, J.: Electromagnetically induced transparency on GaAs quantum well to observe hole spin dephasing. Opt. Express 16, 15728−15732 (2008)

    Article  ADS  Google Scholar 

  • Liu, H., Ren, G., Gao, Y., Zhu, B., Li, H., Wu, B., Jian, Sh: Ultrafast and low-power all-optical switch based on asymmetry electromagnetically induced transparency in MIM waveguide containing Kerr material. Opt. Commun. 353, 189–194 (2015)

    Article  ADS  Google Scholar 

  • Liu, Y-Ch., Li, B.-B., Xiao, Y.-F.: Electromagnetically induced transparency in optical microcavities. Nanophotonics 6(5), 789–811 (2017)

    Article  Google Scholar 

  • Lvovsky, A., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photonics 3, 706–714 (2009)

    Article  ADS  Google Scholar 

  • Ma, S.-M., Xu, H., Ham, B.S.: Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime. Opt. Express 17, 14902−14908 (2009)

    Article  ADS  Google Scholar 

  • Marcinkevičius, S., Gushterov, A., Reithmaier, J.P.: Transient electromagnetically induced transparency in self-assembled quantum dots. Appl. Phys. Lett. 92, 041113 (2008)

    Article  ADS  Google Scholar 

  • Miles, J.A., Simmons, Z.J., Yavuz, D.D.: Subwavelength localization of atomic excitation using electromagnetically induced transparency. Phys. Rev. X 3, 031014 (2013)

    Google Scholar 

  • Naseri, T.: Investigation of dual electromagnetically induced grating based on spatial modulation in quantum well nanostructures via biexciton coherence. Laser Phys. 27, 045401 (2017)

    Article  ADS  Google Scholar 

  • Naseri, T.: Optical properties and electromagnetically induced grating in a hybrid semiconductor quantum dot-metallic nanorod system. Phys. Lett. A 384(7), 126164 (2020)

    Article  Google Scholar 

  • Naseri, T., Hatami-Mehr, M.: Investigating tunable bandwidth cavity via three-level atomic systems. Eur. Phys. J. Plus 134, 529 (2019)

    Article  Google Scholar 

  • Naseri, T., Moradi, R.: Realization of electromagnetically induced phase grating and Kerr nonlinearity in a graphene ensemble under Raman excitation. Superlattices Microstruct. 101, 592–601 (2017)

    Article  ADS  Google Scholar 

  • Naseri, T., Asadpour, S.H., Sadighi-Bonabi, R.: Some optical properties of four-level media via coherent and incoherent pumping fields. JOSA B 30(3), 641−648 (2013)

    Article  ADS  Google Scholar 

  • Phillips, M.C., Wang, H.: Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells. Phys. Rev. B 69, 115337 (2004)

    Article  ADS  Google Scholar 

  • Proite, N.A., Simmons, Z.J., Yavuz, D.D.: Observation of atomic localization using electromagnetically induced transparency. Phys. Rev. A 83, 041803(R) (2011)

    Article  ADS  Google Scholar 

  • Qamar, R., Qamar, S.: Two-dimensional atom localization via probe-absorption spectrum. Phys. Rev. A 90, 039901 (2014)

    Article  ADS  Google Scholar 

  • Raki, Z., Askari, H.R.: Investigation of electromagnetically induced transparency in quantum dots by using second quantization formalism. Opt. Laser Technol. 112, 508–513 (2019)

    Article  ADS  Google Scholar 

  • Sadighi-Bonabi, R., Naseri, T.: Theoretical investigation of electromagnetically induced phase grating in RF-driven cascade-type atomic systems. Appl. Opt. 54(11), 3484–3490 (2015)

    Article  ADS  Google Scholar 

  • Sahrai, M., Abbasabadi, M.: All-optical switch based on doped graphene quantum dots in a defect layer of a one-dimensional photonic crystal. Appl. Opt. 57, 521–6 (2018)

    Article  ADS  Google Scholar 

  • Schmidt, H., Ram, R.J.: All-optical wavelength converter and switch based on electromagnetically induced transparency. Appl. Phys. Lett. 76, 3173−3175 (2000)

    Article  ADS  Google Scholar 

  • Wang, Zh, Yu, B.: Optical bistability and multistability via dual electromagnetically induced transparency windows. J. Lumin. 132(9), 2452–2455 (2012)

    Article  Google Scholar 

  • Woggon, U.: Optical Properties of Semiconductor Quantum Dots. Springer, Berlin (2014)

    Google Scholar 

  • Wu, H., Xiao, M.: White-light cavity with competing linear and nonlinear dispersions. Phys. Rev. A 77, 031801(R) (2008)

    Article  ADS  Google Scholar 

  • Xu, J., Al-Amri, M., Yang, Y., Zhu, Sh-Y, Zubairy, M.S.: Wide-band optical switch via white light cavity. Phys. Rev. A 86, 033828 (2012)

    Article  ADS  Google Scholar 

  • Yamamoto, Y., Tassone, F., Cao, H.: Semiconductor Cavity Quan Electrodynamics. Springer, Berlin (2000)

    Google Scholar 

  • Yang, X., Li, Sh, Zhang, Ch., Wang, H.: Enhanced cross-Kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system. JOSA B 26(7), 1423–1434 (2009)

    Article  ADS  Google Scholar 

  • Zhang, S., Zhou, S., Loy, M.M.T., Wong, G.K.L., Du, S.: Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble. Opt. Lett. 36, 4530−4532 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Naseri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The derivation of the induced dipole moments of the QD

Appendix: The derivation of the induced dipole moments of the QD

By applying the spherical potential for the QD with radius \(R_{s}\), its unperturbed Hamiltonian is written as

$$\begin{aligned} H_{0} = - \frac{-\hbar ^{2}}{2m_{e}^{*}}\triangledown ^{2} - \frac{1}{2} m_{e}^{*}\omega _{0}^{2}r^{2} \end{aligned}$$
(15)

here \(m_{e}^{*}\) is the effective mass of electron, r is the spherical radial coordinate, \(\omega _{0} = \hbar /(2m_{e}^{*}R_{s}^{2})\) is the electron oscillation frequency in the direction of QD radius and \(k = \sqrt{m_{e}^{*}\omega _{0}/\hbar ^{2}}\) is the effective wave number.

By considering the separation of variables method, eigenfunction of the Hamiltonian \(H_{0}\) can be calculated as

$$\begin{aligned} \psi _{n_{1},n_{2},n_{3}}(x_{1}, x_{2}, x_{3}) & = \sqrt{\frac{k^{3}}{2^{(n_{1}+n_{2}+n_{3})}n_{1}!n_{2}!n_{3}!\sqrt{\pi ^{3}}}}\nonumber \\&\quad\times \,H_{n_{1}}(x_{1})H_{n_{2}}(x_{2})H_{n_{3}}(x_{3}), \end{aligned}$$
(16)

where \(n_{i} (i =1,2,3)\) are quantum numbers and \(H_{n_{i}}(x_{i})\) the \(n_{i}\)th Hermitian polynomial. The eigenvalues of \(H_{0}\) is also obtained by

$$\begin{aligned} E^{0}_{n_{1},n_{2},n_{3}}=\left( n_{1}+n_{2}+n_{3}+\frac{3}{2}\right) \hbar \omega _{0} \end{aligned}$$
(17)

By considering the forbidden and allowed transitions,The induced dipole moments for transitions \(|{1}\rangle \leftrightarrow |{2}\rangle (\mu _{12})\) and \(|{1}\rangle \leftrightarrow |{3}\rangle (\mu _{13})\) are calculated as

$$\begin{aligned} \mu ^{z}_{12}(R_{s}) & = -\,4eR_{s}^{5}k^{4}e^{-k^{2}R_{s}^{2}}/5\sqrt{3\pi }\nonumber \\ \mu ^{z}_{13}(R_{s}) & = (e/35\sqrt{\pi })\left(\frac{105erf(R_{s}k)}{k}\right.\nonumber \\&\quad- \left.\,2R_{s}e^{-R_{s}^{2}k^{2}}\times \frac{(105 +70R_{s}^{2}k^{2} +14R_{s}^{4}k^{4} +20R_{s}^{6}k^{6} )}{\sqrt{\pi }}\right) \end{aligned}$$
(18)

where erf(x) is the error function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, T. Electromagnetically induced grating with second field quantization in spherical semiconductor quantum dots. Opt Quant Electron 52, 252 (2020). https://doi.org/10.1007/s11082-020-02358-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02358-w

Keywords

Navigation