Skip to main content
Log in

Effect of bottleneck size on lithium migration in lithium garnets Li7La3Zr2O12 (LLZO)

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Molecular dynamic simulations were performed on element-screened Li7La3Zr2O12 (LLZO)-equivalent doping system to reveal the effect of bottleneck (surface between the polyhedron of 24d and 96h site in cubic LLZO) size on lithium ion diffusion in this garnet-type solid electrolyte. The relationship between lithium ion diffusivity, lattice constant (volume), and bottleneck size were further studied. Herein, we found unneglectable discreteness between lattice constant (volume) and lithium ion diffusivity; beyond that, a quasi-linear relationship between bottleneck size and lithium ion diffusivity under high temperature (1000~1400 K) was unveiled. Our results show that by simply regulating the bottleneck size, the diffusion properties of lithium garnets can be further improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets used or analyzed in the current study are available from the corresponding author on reasonable request.

References

  1. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10:682–686. https://doi.org/10.1038/nmat3066

    Article  CAS  PubMed  Google Scholar 

  2. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916

    Article  CAS  Google Scholar 

  3. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43:4714–4727. https://doi.org/10.1039/c4cs00020j

    Article  CAS  PubMed  Google Scholar 

  4. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103

    Article  CAS  Google Scholar 

  5. Bates JB, Dudney NJ, Gruzalski GR et al (1992) Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53–56:647–654. https://doi.org/10.1016/0167-2738(92)90442-R

    Article  Google Scholar 

  6. Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693. https://doi.org/10.1016/0038-1098(93)90841-A

    Article  CAS  Google Scholar 

  7. Cussen EJ (2006) The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. Chem Commun:412–413. https://doi.org/10.1039/b514640b

  8. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386. https://doi.org/10.1016/j.nanoen.2017.01.028

    Article  CAS  Google Scholar 

  9. Klenk M, Lai W (2015) Local structure and dynamics of lithium garnet ionic conductors: tetragonal and cubic Li7La3Zr2O7. Phys Chem Chem Phys 17:8758–8768. https://doi.org/10.1039/C4CP05690F

    Article  CAS  PubMed  Google Scholar 

  10. Morgan BJ (2017) Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study. R Soc Open Sci 4:170824

    Article  Google Scholar 

  11. He X, Zhu Y, Mo Y (2017) Origin of fast ion diffusion in super-ionic conductors. Nat Commun 8:1–7. https://doi.org/10.1038/ncomms15893

    Article  CAS  Google Scholar 

  12. Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14:1026–1031. https://doi.org/10.1038/nmat4369

    Article  CAS  PubMed  Google Scholar 

  13. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for Lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116:140–162

    Article  CAS  Google Scholar 

  14. Martínez-Juárez A, Pecharromán C, Iglesias JE, Rojo JM (1998) Relationship between activation energy and bottleneck size for Li+ ion conduction in NASICON materials of composition LiMM‘(PO4) 3; M, M‘= Ge, Ti, Sn, Hf. J Phys Chem B 102:372–375. https://doi.org/10.1021/jp973296c

    Article  Google Scholar 

  15. Ong SP, Mo Y, Richards WD, Miara L, Lee HS, Ceder G (2013) Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M=Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ Sci 6:148–156. https://doi.org/10.1039/C2EE23355J

    Article  CAS  Google Scholar 

  16. Fujimura K, Seko A, Koyama Y, Kuwabara A, Kishida I, Shitara K, Fisher CAJ, Moriwake H, Tanaka I (2013) Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms. Adv Energy Mater 3:980–985. https://doi.org/10.1002/aenm.201300060

    Article  CAS  Google Scholar 

  17. Jalem R, Aoyama T, Nakayama M, Nogami M (2012) Multivariate method-assisted ab initio study of olivine-type LiMXO 4 (main group M 2+−X 5+ and M 3+−X 4+) compositions as potential solid electrolytes. Chem Mater 24:1357–1364. https://doi.org/10.1021/cm3000427

    Article  CAS  Google Scholar 

  18. Miara LJ, Richards WD, Wang YE, Ceder G (2015) First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets. Chem Mater 27:4040–4047. https://doi.org/10.1021/acs.chemmater.5b01023

    Article  CAS  Google Scholar 

  19. Adams S, Rao RP (2011) High power lithium ion battery materials by computational design. Phys Status Solidi Appl Mater Sci 208:1746–1753. https://doi.org/10.1002/pssa.201001116

    Article  CAS  Google Scholar 

  20. Adams S (2001) Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Crystallogr B B57:278–287

    Article  CAS  Google Scholar 

  21. Gale JD, Rohl AL (2003) The general utility lattice program (GULP). Mol Simul 29:291–341. https://doi.org/10.1080/0892702031000104887

    Article  CAS  Google Scholar 

  22. Yu S, Siegel DJ (2017) Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 29:9639–9647. https://doi.org/10.1021/acs.chemmater.7b02805

    Article  CAS  Google Scholar 

  23. Flygare WH, Huggins RA (1973) Theory of ionic transport in crystallographic tunnels. J Phys Chem Solids 34:1199–1204. https://doi.org/10.1016/S0022-3697(73)80209-4

    Article  CAS  Google Scholar 

  24. Awaka J, Takashima A, Kataoka K, Kijima N, Idemoto Y, Akimoto J (2011) Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem Lett 40:60–62. https://doi.org/10.1246/cl.2011.60

    Article  CAS  Google Scholar 

  25. Chen F, Li J, Huang Z, Yang Y, Shen Q, Zhang L (2018) Origin of the phase transition in lithium garnets. J Phys Chem C 122:1963–1972. https://doi.org/10.1021/acs.jpcc.7b10911

    Article  CAS  Google Scholar 

  26. Zhang Y, Chen F, Li J, Zhang L, Gu J, Zhang D, Saito K, Guo Q, Luo P, Dong S (2018) Regulation mechanism of bottleneck size on Li+ migration activation energy in garnet-type Li7La3Zr2O12. Electrochim Acta 261:137–142. https://doi.org/10.1016/j.electacta.2017.12.133

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Key Research and Development Program of China (No. 2018YFB0905600), the National Natural Science Foundation of China (No. 51972246), Fundamental Research Funds for the Central Universities in China, State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology), the “111” project (No. B13035), and the Science and Technology Project of Global Energy Interconnection Research Institute Co., Ltd. (SGGR0000WLJS1801080).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Fei Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

The code used for data analysis in current study is available from corresponding author on reasonable request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 34 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Xu, L., Li, J. et al. Effect of bottleneck size on lithium migration in lithium garnets Li7La3Zr2O12 (LLZO). Ionics 26, 3193–3198 (2020). https://doi.org/10.1007/s11581-020-03582-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03582-w

Keywords

Navigation