Skip to main content
Log in

Bacterial cellulose membranes for environmental water remediation and industrial wastewater treatment

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This work describes preparation of bacterial cellulose membranes and their use as filters for water remediation. The samples were tested as filters using natural specimens that were extracted from the Igarassu River basin in Pernambuco, Brazil, and using suspensions with a high load of Escherichia coli and raw industrial effluents from the dairy and textile industries. The bacterial cellulose membrane performance was compared with commercial membranes that are used in sterile environments with better results. The membranes were shown to be effective for removing E. coli and dye effluent for up to ten cycles. When the samples that were extracted from the river were studied, no microorganisms were detected after the filtrate was inoculated into a culture medium. The results reported here show that the bacterial cellulose membranes are effective for the remediation of samples with different compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abreu P, Pereira EL, Campos CMM, Naves FL (2013) Photocatalytic Oxidation Process (UV/H2O2/ZnO) in the treatment and sterilization of dairy wastewater. Acta Sci 35:75–81

    Google Scholar 

  • Andrade LH, Mendes FDS, Espindola JC, Amaral MCS (2014) Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor. Sep Purif Technol 126:21–29

    CAS  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC

    Google Scholar 

  • Babu RB, Maruthamuthu S, Rajasekar A, Muthukumar PN (2006) Microbiologically influenced corrosion in dairy effluent. Int J Environ Sci Technol 3:159–166

    CAS  Google Scholar 

  • Baker RW (2004) Membrane technology and applications. Wiley, California

    Google Scholar 

  • Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A (2004) Heterotrophic plate count measurement in drinking water safety management: Report of an Expert Meeting Geneva. Int J Food Microbiol 92:241–247

    CAS  Google Scholar 

  • Barud HS, Assunção RMN, Martinez MAU, Ghys JD, Marques RFC, Messaddeq Y, Ribeiro SJL (2008) Bacterial cellulose–silica organic–inorganic hybrids. J Sol-Gel Sci Technol 46:363–367

    CAS  Google Scholar 

  • Bekatorou A, Plioni I, Sparou K, Maroutsiou R, Tsafrakidou P, Petsi T, Kordouli E (2019) Bacterial cellulose production using the corinthian currant finishing side-stream and cheese whey: process optimization and textural characterization. Foods 8:193

    CAS  Google Scholar 

  • Bortoluzzi AC, Faitão JA, Luccio M, Dallago RM, Steffens J, Zabot GL, Tres MV (2017) Dairy wastewater treatment using integrated membrane systems. J Environ Chem Eng 5:4819–4827

    CAS  Google Scholar 

  • Brandes R, Trindade ECA, Vanin DF, Vargas VMM, Carminatti CA, Hazin A, Al-Qureshi R (2018) DOS Spherical bacterial cellulose/TiO2 nanocomposite with potential application in contaminants removal from wastewater by photocatalysis. Fiber Polym 19:1861–1868

    CAS  Google Scholar 

  • Ҫakar F, Ozer I, Aytekin AO, Sahin F (2014) Improvement production of bacterial cellulose by a semi-continuous process in molasses medium. Carbohydr Polym 106:7–13

    Google Scholar 

  • Carpenter AW, Lannoy CF, Wisner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287

    CAS  Google Scholar 

  • Caslake LF, Connolly DJ, Menon V, Duncanson CM, Rojas R, Tavakoli J (2004) Disinfection of contaminated water by using solar irradiation. Appl Environ Microbiol 70:1145–1150

    CAS  Google Scholar 

  • Castro C, Zuluaga R, Putaux JL, Caro G (2011) Mondragin, I., Gañán, P. Structural characterization of bacterial cellulose produced by Gluconacetobacterswingsii sp. From Colombian agroindustrial wastes. Carbohydr Polym 84:96–102

    CAS  Google Scholar 

  • Choi YJ, Ahn Y, Kang MS, Jun HK, Kim IS, Moon SH (2004) Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. J Chem Technol Biotechnol 79:79–84

    CAS  Google Scholar 

  • Collivignarelli MC, Abbà A, Benigna I, Sorlini S, Torretta V (2018) Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability. https://doi.org/10.3390/su10010086

    Article  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki B, Brown RM Jr (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151

    CAS  Google Scholar 

  • Dabrowski W, Zylka R, Malinowski P (2017) Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant. Environ Res 153:135–139

    CAS  Google Scholar 

  • Dasgupta J, Silkder J, Chakraborty S, Curcio S, Drioli E (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manage 147:55–72

    CAS  Google Scholar 

  • Figueiredo ARP, Silvestre AJD, Neto CP, Freire CSR (2015) In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production. Carbohydr Polym 132:400–408

    CAS  Google Scholar 

  • Franco S, Gaetano V, Gianni T (2018) Urbanization and climate change impacts on surface water quality: enhancing the resilience by reducing impervious surfaces. Water Res 144:491–502

    CAS  Google Scholar 

  • Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair Carbohydr. Polym. 92:1432–1442

    CAS  Google Scholar 

  • Garcha S, Verma N, Brar SK (2016) Isolation, characterization and identification of microorganisms from unorganized dairy sector wastewater and sludge samples and evaluation of their biodegradability.Water Resour. Ind. 16:19–28

    Google Scholar 

  • Gayathri G, Srinikethan G (2010) Bacterial cellulose production by K. saccharivorans BC1 strain using crude distillery effluent as cheap and cost effective nutrient medium. Int J Biol Macromol 138:950–957

    Google Scholar 

  • Goel NK, Kumar V, Misra N, Varshney L (2015) Cellulose based cationic adsorbent fabricated via radiation grafting process for treatment of dyes waste water. Carbohydr Polym 132:444–451

    CAS  Google Scholar 

  • Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87:1026–1037

    CAS  Google Scholar 

  • Hassan E, Hassan M, Abouzeid R, Berglund L, Oksman K (2017) Use of bacterial cellulose and crosslinked cellulose nanofibers membranes for removal of oil from oil-in-water emulsions. Polymers 9:388–4012

    Google Scholar 

  • Hatimi B, Mouldar K, Loudiki A, Hafdi H, Joudi M, Daoudi EM, Nasrellah H, Lançar T, El Mhammedi MA, Bakasse M (2020) Low cost pyrrhotite ash/clay-based inorganic membrane for industrial wastewaters treatment. J Environ Chem Eng 8:103646

    CAS  Google Scholar 

  • He J, Zhao H, Li X, Su D, Zhang F, Ji H, Liu R (2018) Superelastic and superhydrophobic bacterial cellulose/silica aerogels with a hierarchical cellular structure for oil absorption and recovery. J Hazard Mater 346:199–207

    CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352

    CAS  Google Scholar 

  • Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2013) Recent advances in bacterial cellulose. Cellulose 21:1–30

    CAS  Google Scholar 

  • Huang X, Li B, Wang S, Yue X, Yu Z, Deng X, Ma J (2020) Facile in-situsynthesis of PEI-Pt modified bacterial cellulose bio-adsorbent and its distinctly selective adsorption of anionic dyes. Colloids Surf 586:124163

    Google Scholar 

  • Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26:2895–2911

    CAS  Google Scholar 

  • Jahan F, Kumar V, Saxena RK (2018) Distillery effluent as a potential medium for bacterial cellulose production: a biopolymer of great commercial importance. Bioresour Technol 250:922–926

    CAS  Google Scholar 

  • Khan K, Lu Y, Saeed MA, Bilal H, Sher H, Khan H, Ali J, Wang P, Uwizeyimana H, Baninla Y, Li Q, Liu Z, Nawab J, Zhou Y, Su C, Liang R (2018) Prevalent fecal contamination in drinking water resources and potential health risks in Swat Pakistan. J Environ Sci 71:1–12

    Google Scholar 

  • Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Garcia IL, Kookos LK, Papanikolaou S, Kwan TH, Lin CSK (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627

    CAS  Google Scholar 

  • Kwak MH, Kim JE, Go J, Koh EK, Sung HS, Son HJ, Kim HS, Yun YH, Jung YJ, Hwang DY (2015) Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications. Carbohydr Polym 122:387–398

    CAS  Google Scholar 

  • Li Y, Wang S, Huang R, Huang Z, Hu B, Zheng W, Yang G, Jiang X (2015) Evaluation of the effect of the structure of bacterial cellulose on full-thickness skin wound repair on a microfluidic chip. Biomacromol 16:780–789

    CAS  Google Scholar 

  • Li C, Ma H, Venkateswaran S, Hsiao BJ (2019) Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions. Chem, Eng, p 123458

    Google Scholar 

  • Lima G, Souza R, Barros Ch, Rezende R, Custódio L, Cavalcante G M (2005) Diagnóstico ambiental das lavanderias de Toritama. Agência estadual de meio ambiente e recursos hídricos–CPRH, pp 1–48. http://www.cprh.pe.gov.br/downloads/toritama.pdf

  • Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 15:603–611

    Google Scholar 

  • Liu X, Souzandeh H, Zheng Y, Xie Y, Zhong WH, Wang C (2017) Soy protein isolate/bacterial cellulose composite membranes for high-efficiency particulate air filtration. Compos Sci Technol 138:124–133

    CAS  Google Scholar 

  • López C, Moreira MT, Feijoo G, Lema JM (2004) Dye decolorization by manganese peroxidase in an enzymatic membrane bioreactor. Biotechnol 20:74–81

    Google Scholar 

  • Matsuura T (2001) Progress in membrane science and technology for seawater desalination a review. Desalination 134:47–54

    CAS  Google Scholar 

  • Mohammadalinejhad S, Almasi H, Esmaili M (2019) Simultaneous green synthesis and in situ impregnation of silver nanoparticles into organic nanofibers by Lythrum salicaria extract: morphological, thermal, antimicrobial and release properties. Mater Sci Eng C 105:110115

    CAS  Google Scholar 

  • Mohmood I, Lopes CB, Lopes I, Ahmad I, Duarte AC, Pereira E (2013) Nanoscale materials and their use in water contaminants removal: a review. Environ Sci Pollut Res 20:1239–1260

    CAS  Google Scholar 

  • Moon RJ, Martini A, Naim J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  Google Scholar 

  • Napavichayanun S, Amomsudthiwat P, Pienpinijtham P, Aramwit P (2015) Interaction and effectiveness of antimicrobials along with healing-promoting agents in a novel biocellulose wound dressing. Mater Sci Eng, C 55:95–104

    CAS  Google Scholar 

  • Neamtum M, Siminiceanu I, Yediler A, Kettrup A (2002) Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation. Dyes Pigm 53:93–99

    Google Scholar 

  • Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP (2014) Contamination of water resources by pathogenic bacteria. AMB Express. https://doi.org/10.1186/s13568-014-0051-x

    Article  Google Scholar 

  • Payment P, Plante R, Cejka P (2001) Removal of indicator bacteria, human enteric viruses, Giardia cysts, and Cryptosporidium oocysts at a large wastewater primary treatment facility. Can J Microbiol 47:188–193

    CAS  Google Scholar 

  • Pendergast MTM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971

    CAS  Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286

    CAS  Google Scholar 

  • Phisalaphong M, Jatupaiboon N (2008) Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydr Polym 74:482–488

    CAS  Google Scholar 

  • Porwal HJ, Mane AV, Velhal SG (2015) Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resour. Ind. 9:1–15

    Google Scholar 

  • Qiu Y, Qiu L, Cui J, Wei Q (2016) Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater Sci Eng C 59:303–309

    CAS  Google Scholar 

  • Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. Appl Mater Interfaces 13:7373–7381

    Google Scholar 

  • Saranya R, Arthanareeswaran A, Ismail AF, Dionysiou DD, Paul D (2015) Zero-valent iron impregnated cellulose acetate mixed matrix membranes for the treatment of textile industry effluent. RCS Adv 5:62477–62485

    Google Scholar 

  • Sarkar B, Chakrabarti PP, Vijaykumar A, Kale V (2006) Wastewater treatment in dairy industries: possibility of reuse. Desalination 195:141–152

    CAS  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hosfstetter TB, Johnson AC, Gunten UV, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    CAS  Google Scholar 

  • Shivsharan VS, Wani M, Khetmalas MB (2013) Isolation of microorganisms from dairy effluent. Microbiol Res 3:346–354

    CAS  Google Scholar 

  • State Agency for the Environment (2016) Monitoring report of the hydrographic basin State of Pernambuco. http://www.cprh.pe.gov.br/ARQUIVOS_ANEXO/bacias2014/G_Relat16-IG.pdf. Accessed 01 Dec 2018

  • Stumpf TR, Yang X, Zhang J, Cao X (2018) In situ and exsitu modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C 82:372–383

    CAS  Google Scholar 

  • Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: Properties and modifications: A review. Biotechnol Adv 33:1547–1571

    CAS  Google Scholar 

  • Taha AA, Wu Y, Wang H, Li F (2012) Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. J Environ Manage 112:10–16

    CAS  Google Scholar 

  • Takai M, Nonomura F, Inukai T, Fujiwara M, Hayashi J (1991) Filtration and permeation characteristics of bacterial cellulose composite. Transaction 47:119–129

    CAS  Google Scholar 

  • Torgobo S, Sukay P (2018) Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl Mater Today 11:34–49

    Google Scholar 

  • Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084

    Article  CAS  Google Scholar 

  • Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102:1398–1405

    CAS  Google Scholar 

  • Wahid F, Bai H, Wang FP, Xie YY, Zhang YW, Chu LQ, Jia SR, Zhong C (2020) Facile synthesis of bacterial cellulose and polyethyleneimine based hybrid hydrogels for antibacterial applications. Cellulose 27(369):383

    Google Scholar 

  • Wang Y, Serventi L (2019) Sustainability of dairy and soy processing: a review on wastewater recycling. J Clean Prod 237:117821

    CAS  Google Scholar 

  • Wang Y, Yuan X, Yu K, Meng H, Zheng Y, Peng J, Lu S, Liu X, Xie Y, Qiao K (2018) Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials 171:118–132

    CAS  Google Scholar 

  • Wanichapichart P, Kaewnopparat S, Buaking K, Puthai W (2002) Characterization of cellulose membranes produced by Acetobacter xylinum. J Sci Technol 24:856–862

    Google Scholar 

  • World Health Organization (2018) Drinking-water. http://www.who.int/news-room/fact-sheets/detail/drinking-water. Accessed 08 Nov 2018

  • Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic efuents: a critical review. Int J Environ Sci Technol 16:1193–1226

    CAS  Google Scholar 

  • Yin N, Chen S, Li Z, Ouyang Y, Hu W, Tang L, Zhang W, Zhou B, Yang J, Xu Q, Wang H (2012) Porous bacterial cellulose prepared by a facile surfactant-assisted foaming method in azodicarbonamide-NaOH aqueous solution. Mater Lett 81:131–134

    CAS  Google Scholar 

  • Yin N, Du R, Zhao F, Han Y, Zhou Z (2020) Characterization of antibacterial bacterial cellulose composite membranes modified with chitosan or chitooligosaccharide. Carbohydr Polym 229:115520

    Google Scholar 

  • Zaini MAA, Amano Y, Machida M (2010) Adsorption of heavy metals onto active carbons derived from polyacrylonitrile fiber. J Hazard Mater 180:552–560

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Research Support Center/UFRPE (CENAPESQ), Center for Strategic Technologies of the Northeast (CETENE), Pernambuco State Environment Agency (CPRH), and the Analytical Center of the Department of Fundamental Chemistry/UFPE. A.A. Alves acknowledges for the doctoral scholarship from FACEPE, Grant No. APQ-0994-1.06/15. M.F. The research was funded by CNPq (Universal Project 14/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Belian.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Editorial responsibility: Ta Yeong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, A.A., Silva, W.E., Belian, M.F. et al. Bacterial cellulose membranes for environmental water remediation and industrial wastewater treatment. Int. J. Environ. Sci. Technol. 17, 3997–4008 (2020). https://doi.org/10.1007/s13762-020-02746-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02746-5

Keywords

Navigation