Skip to main content
Log in

Investigation of Adhesion Mechanism in Molten Silicon/Ceramics Systems

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

An experimental study was conducted to investigate the interfaciale adhesion between molten silicon and TiB2, ZrB2 and HfB2 ceramics by using the sessile drop technique. Contact angle measurements were performed as a function of wetting time at 1703 °C. The interface between silicon and ceramic was analyzed using SEM-EDS. The dependence of adhesion energy, Wad, on elastic parameters of these systems was investigated. Different approaches are used and semi-empirical relations are deduced for all systems. It is shown that, in all cases, the adhesion energy increases linearly with Rayleigh velocities of ceramic substrate, VRC; it takes the form: Wad. = 0.07 VRC + C. Where the first term of this equation represents the Van der Waals, WVDW, contribution of Wad, it is only depends on VRC. However, the second term represent the chemical equilibrium term, Wchem-equil, is strongly depends on the system combination as well as on the energy gap of the ceramics substrate. Moreover, Wchem-equil is higher for small bandgap ceramic materials due to big density inside ceramic crystal; consequently, ease and height electron transfer through the metal/ceramic interface. On the other hand, a new phenomenon takes place in silicon/large bandgap ceramics interfaces which is the generation of the interface states density that occur from electrons-holes recombination. This interfacial phenomenon depends on energy bandgap of ceramic which explained the variation of Wchem-equil values for large bandgap ceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordon I, Van Gestel D, Van Nieuwenhuysen K, Carnel L, Poortmans J (2005) Thin-film polycrystalline silicon solar cells on ceramic substrates by aluminium-induced crystallization. Thin Solid Films 487:113–117. https://doi.org/10.1016/j.tsf.2005.01.047

    Article  CAS  Google Scholar 

  2. Tabrizia AA, Pahlavan A (2020) Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer. Opt Commun 454:124437. https://doi.org/10.1016/j.optcom.2019.124437

    Article  CAS  Google Scholar 

  3. Yan D, Phang SP, Wan YM, Samundsett C, Macdonald D, Cuevas A (2019) High efficiency n-type silicon solar cells with passivating contacts based on PECVD silicon films doped by phosphorus diffusion. Sol Energy Mater Sol Cells 193:80–84. https://doi.org/10.1016/j.solmat.2019.01.005

    Article  CAS  Google Scholar 

  4. Shao J, Xi X, Li S, Liu G, Peng R, Li C, Chen G, Chen R (2019) Longer hydrogenation duration for large area multi-crystalline silicon solar cells based on high-intensity infrared LEDs. Opt Commun 450:252–260. https://doi.org/10.1016/j.optcom.2019.06.011

    Article  CAS  Google Scholar 

  5. Legallais M, Thu T, Nguyen T, Cazimajou T, Mouis M, Salem B, Ternon C (2019) Material engineering of percolating silicon nanowire networks for reliable and efficient electronic devices. Materials Chemistry and Physics 238:121871. https://doi.org/10.1016/j.matchemphys.2019.121871

    Article  CAS  Google Scholar 

  6. Zhang X, Feng M, Zhao M, Zhang P, He C, Qi H, Han W, Guo F (2020) Failure of silicon nitride ceramic flotation spheres at critical state of implosion. Applied Ocean Research 97:102080. https://doi.org/10.1016/j.apor.2020.102080

    Article  Google Scholar 

  7. Bulyarskiy SV (2019) The effect of electron-phonon interaction on the formation of reverse currents of p-n-junctions of silicon-based power semiconductor devices. Solid-State Electronics 160:107624. https://doi.org/10.1016/j.sse.2019.107624

    Article  CAS  Google Scholar 

  8. Wang J, Wu L, Chen X, Zhuo W, Wang (2018) Avoiding blister defects in low-stress hydrogenated amorphous silicon films for MEMS sensors. Sensors Actuators A Phys 276:11–16. https://doi.org/10.1016/j.sna.2018.04.021

    Article  CAS  Google Scholar 

  9. Jantawong J, Atthi N, Leepattarapongpan C, Srisuwan A, Jeamsaksiri W, Sooriakumar K, Austin A, Niemcharoena S (2019) Fabrication of MEMS-based capacitive silicon microphone structure with staircase contour cavity using multi-film thickness mask. Microelectron Eng 206:17–24. https://doi.org/10.1016/j.mee.2018.12.004

    Article  CAS  Google Scholar 

  10. Almuramady N, Borodich FM, Goryacheva I, Torskaya EV (2018) Damage of functionalized self-assembly monomolecular layers applied to silicon microgear MEMS. Tribol Int 129:202–213. https://doi.org/10.1016/j.triboint.2018.07.049

    Article  CAS  Google Scholar 

  11. Frear D (2017) Packaging materials. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-48933-9_53

    Chapter  Google Scholar 

  12. Lerner RG, Trigg GL (2005) Encyclopedia of physics3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  13. Li JG (1995) Chemical trends in the thermodynamic adhesion of metal/ceramic systems. Mater Let 22:169–174. https://doi.org/10.1016/0167-577X(94)00244-4

    Article  CAS  Google Scholar 

  14. Naidich Yu V (1981) The wettability of solids by liquid metals. Progr Surf Membr Sci 14:353–486. https://doi.org/10.1016/B978-0-12-571814-1.50011-7

    Article  Google Scholar 

  15. Hadef Z, Doghmane A, Hadjoub Z (2018) Analytical investigation of adhesion in metals/ceramic systems via elastic parameters. Opto-elec adv Mater RC 12:608–612

    CAS  Google Scholar 

  16. Almohammadi H, Amirfazli A (2018) Sessile drop evaporation under an electric field. Coll Surf A 555:580–585. https://doi.org/10.1016/j.colsurfa.2018.07.022

    Article  CAS  Google Scholar 

  17. Naikade M, Fankhänel B, Weber L, Ortona A, Stelter M, Graule T (2019) Studying the wettability of Si and eutectic Si-Zr alloy on carbon and silicon carbide by sessile drop experiments. Euro Ceram Soc 39:735–742. https://doi.org/10.1016/j.jeurceramsoc.2018.11.049

    Article  CAS  Google Scholar 

  18. de Wilde E, Bellemans I, Campforts M, Guo M, Blanpain B, Moelans N, Verbeken K (2016) Sessile drop evaluation of high temperature copper/spinel and slag/spinel interactions. Tran Nonf Met Soc China 26:2770–2783. https://doi.org/10.1016/S1003-6326(16)64344-3

    Article  CAS  Google Scholar 

  19. Artini C, Muolo ML, Passerone A, Cacciamani G, Valenza F (2013) Isothermal solid–liquid transitions in the (Ni, B)/ZrB2 system as revealed by sessile drop experiments. Mater Sci 48:5029–5035. https://doi.org/10.1007/s10853-013-7290-0

    Article  CAS  Google Scholar 

  20. Li JG, Hausner H (1996) Reactive wetting in the liquid-silicon/solid-carbon system. Am Ceram Soc 79:873–880. https://doi.org/10.1111/j.1151-2916.1996.tb08519.x

    Article  CAS  Google Scholar 

  21. Li JG, Hausner H (1992) Wetting and adhesion in liquid silicon/ceramic systems. Mater Lett 14:329–332. https://doi.org/10.1016/0167-577X(92)90047-N

    Article  CAS  Google Scholar 

  22. Li JG, Hausner H (1995) Wetting and infiltration of graphite materials by molten silicon. Scripta Metall Mater 32:377–382. https://doi.org/10.1016/S0956-716X(99)80068-5

    Article  CAS  Google Scholar 

  23. Zhou H, Singh R, N. (1995) Kinetics model for the growth of silicon carbide by the reaction of liquid silicon with carbon. Am Ceram Soc 78:2456–2462. https://doi.org/10.1111/j.1151-2916.1995.tb08685.x

    Article  CAS  Google Scholar 

  24. Monteverde F, Bellosi A (2004) Efficacy of HfN as sintering aid in the manufacture of ultrahigh-temperature metal diborides-matrix ceramics. Mater Res 19:3576–3585. https://doi.org/10.1557/jmr.2004.0460

    Article  CAS  Google Scholar 

  25. Monteverde F, Bellosi A (2004) Microstructure and properties of an HfB2-SiC composite for ultra high temperature applications. Adv Eng Mater 6:331–336. https://doi.org/10.1002/adem.200400016

    Article  CAS  Google Scholar 

  26. Anselmi-Tamburini U, Munir ZA, Kodera Y, Imai T, Ohyanagi M (2005) Influence of synthesis temperature on the defect structure of boron carbide: experimental and modeling studies. Am Ceram Soc 88:1382–1387. https://doi.org/10.1111/j.1551-2916.2005.00245.x

    Article  CAS  Google Scholar 

  27. Anselmi-Tamburini U, Garay JE, Munir ZA (2005) Fundamental investigations on the spark plasma sintering/synthesis process. III. Current effect on reactivity. Mater. Sci Eng A 407:24–30. https://doi.org/10.1016/j.msea.2005.06.066

    Article  CAS  Google Scholar 

  28. Viktorov IA (1967) Rayleigh and lamb waves. Plenum Press, New York

    Book  Google Scholar 

  29. Hadef Z, Doghmane A, Kamli K, Hadjoub Z (2018) Correlation between surface tension, work of adhesion in liquid metals/ceramic systems and acoustic parameters. Prog Phys Met 19:168–184. https://doi.org/10.15407/ufm.19.02.168

    Article  CAS  Google Scholar 

  30. Kushibiki J, Chubachi N (1985) Material characterization by line-focus-beam acoustic microscope, IEEE trans. Sonics and Ultrasonics SU32:189–212 http://hdl.handle.net/10097/46465

    Article  Google Scholar 

  31. Maev RG (2008) Acoustic microscopy: fundamentals and applications. Wiley-VCH, Berlin

    Book  Google Scholar 

  32. Sheppard CGR, Wilson T (1981) Effects of high angles of convergence on V(z) in the scanning acoustic microscopy. Appl Phys Let 38:884–892. https://doi.org/10.1063/1.92198

    Article  Google Scholar 

  33. Zinin PV (2001) In: Handbook of Elastic Properties of Solids, Liquids and Gases (ed) Levy, bass and stern. New York, Academic Press

    Google Scholar 

  34. Strehlow WH, Cook EL (1973) Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. Phys Chem Ref Data 2:163–199. https://doi.org/10.1063/1.3253115

    Article  CAS  Google Scholar 

  35. Briggs G. A. D., Kolosov O. V. (2010) Acoustic microscopy, Oxford Univ. Press, 2nd edition, New York. https://doi.org/10.1093/acprof:oso/9780199232734.001.0001

  36. Li JG (1992) Role of electron density of liquid metals and bandgap energy of solid ceramics on the work of adhesion and wettability of metal-ceramic systems. Mater Sci Lett 11:903–905. https://doi.org/10.1007/BF00729089

    Article  CAS  Google Scholar 

  37. Chatain D, Coudurier L, Eustathopoulos N (1988) Wetting and interfacial bonding in ionocovalent oxide-liquid metal systems. Rev Phys Appl 23:1055–1064. https://doi.org/10.1051/rphysap:019880023060105500

    Article  CAS  Google Scholar 

  38. Barsoum M. W., Ownby P. D. (1981) In: surfaces and interfaces in ceramic and ceramic-metal systems, Eds. J. A. Pask and Evans, plenum press, New York, 457

  39. Duffy MT, Berkman S, Cullen GW, d’Aiello RV, Moss HI (1980) Development and evaluation of refractory CVD coatings as contact materials for molten silicon. Crys Grow 50:347–365. https://doi.org/10.1016/0022-0248(80)90259-6

    Article  CAS  Google Scholar 

  40. Humenik M, Kingery WDJ (1954) Metal-ceramic interactions: III, surface tension and wettability of metal-ceramic systems. Am Ceram Soc 37:18–23. https://doi.org/10.1111/j.1151-2916.1954.tb13972.x

    Article  CAS  Google Scholar 

  41. Buchanan DA (1994) On the generation of interface states from electron-hole recombination in metal-oxide-semiconductor capacitors. Appl Phys Lett 65:1257–1259. https://doi.org/10.1063/1.113008

    Article  CAS  Google Scholar 

  42. Buchanan DA, DiMaria DJ (1990) Interface and bulk trap generation in metal-oxide-semiconductor capacitors. J Appl Phys 67:7439–7452. https://doi.org/10.1063/1.344534

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria Hadef.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadef, Z., Kamli, K. Investigation of Adhesion Mechanism in Molten Silicon/Ceramics Systems. Silicon 13, 729–737 (2021). https://doi.org/10.1007/s12633-020-00440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00440-2

Keywords

Navigation