Skip to main content
Log in

Theoretical and experimental study of a surface plasmon sensor based on Ag-MgF2 grating coupler

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

To achieve a high-sensitivity surface plasmon resonance sensor, a sensor based on Ag-MgF2 grating was designed and fabricated. A suitable-thickness MgF2 was suggested to prevent the oxidation of silver while avoiding reducing its plasmonic properties. The combination of an interference lithography approach, the material used for the fabrication of grating, and angular interrogation method led to a less costly sensor. The sensitivity and figure of merit of the proposed sensor approached 85.61 deg/RIU and 51 RIU−1, respectively, which is higher than the experimental values reported so far for grating-based sensors. It was shown that by optimization of the silver-based structure, it has great potential for use in sensor applications. It was observed that based on the made grating pattern, the numerical results were closer to experimental results by considering the grating pattern in a sine form. The effect of temperature on sensor performance was experimentally investigated. It was demonstrated that the change in the resonance angle with the temperature in this structure was equal to 0.02 deg/°C and it was also experimentally shown that temperature changes in the analyte refractive index had the most effect on the variations of the SPR response with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Citartan, S.C. Gopinath, J. Tominaga, T.-H. Tang, Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst 138(13), 3576–3592 (2013)

    Article  ADS  Google Scholar 

  2. H. Farmani, A. Farmani, Z. Biglari, A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys. E Low-dimens. Syst. Nanostruct. 116, 113730 (2020)

    Article  Google Scholar 

  3. T. Arakawa, H. Yasukawa, K. Fujimoto, Detection of alcohol vapor using surface plasmon resonance sensor with organic-inorganic hybrid layers. Sens. Mater. 22(4), 201–209 (2010)

    Google Scholar 

  4. G. Dharmalingam, N.A. Joy, B. Grisafe, M.A. Carpenter, Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control. Beilstein J. Nanotechnol. 3(1), 712–721 (2012)

    Article  Google Scholar 

  5. A. Abbas, M.J. Linman, Q. Cheng, New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens. Bioelectron. 26(5), 1815–1824 (2011)

    Article  Google Scholar 

  6. P.K. Teotia, R. Kaler, 1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect. Opt. Commun. 406, 188–191 (2018)

    Article  ADS  Google Scholar 

  7. R. Wang, W. Wang, H. Ren, J. Chae, Detection of copper ions in drinking water using the competitive adsorption of proteins. Biosens. Bioelectron. 57, 179–185 (2014)

    Article  Google Scholar 

  8. B.J. Yakes, J. Deeds, K. White, S.L. DeGrasse, Evaluation of surface plasmon resonance biosensors for detection of tetrodotoxin in food matrices and comparison to analytical methods. J. Agric. Food Chem. 59(3), 839–846 (2010)

    Article  Google Scholar 

  9. Z. Altintas, Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanoMIPs. Sci. Rep. 8(1), 11222 (2018)

    Article  ADS  Google Scholar 

  10. Z. Samavati, A. Samavati, A. Ismail, M.A. Rahman, M.H.D. Othman, Detection of saline-based refractive index changes via bilayer ZnO/Ag-coated glass optical fiber sensor. Appl. Phys. B 125(9), 161 (2019)

    Article  ADS  Google Scholar 

  11. A. Farmani, A. Mir, Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photon. Technol. Lett. 31(8), 643–646 (2019)

    Article  ADS  Google Scholar 

  12. J. Zhu, L. Qin, S. Song, J. Zhong, S. Lin, Design of a surface plasmon resonance sensor based on grating connection. Photon. Sens. 5(2), 159–165 (2015)

    Article  ADS  Google Scholar 

  13. Z. Sadeghi, H. Shirkani, High-performance label-free near-infrared SPR sensor for wide range of gases and biomolecules based on graphene-gold grating. Plasmonics 14(5), 1179–1188 (2019)

    Article  Google Scholar 

  14. A. Takeda, T. Aihara, M. Fukuhara, Y. Ishii, M. Fukuda, Schottky-type surface plasmon detector with nano-slit grating using enhanced resonant optical transmission. J. Appl. Phys. 116(8), 084313 (2014)

    Article  ADS  Google Scholar 

  15. C. Ropers, C. Neacsu, T. Elsaesser, M. Albrecht, M. Raschke, C. Lienau, Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7(9), 2784–2788 (2007)

    Article  ADS  Google Scholar 

  16. H. Shen, B. Maes, Combined plasmonic gratings in organic solar cells. Opt. Express 19(106), A1202–A1210 (2011)

    Article  ADS  Google Scholar 

  17. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors. Sens. Actuators B Chem. 54(1–2), 3–15 (1999)

    Article  Google Scholar 

  18. X. Liang, A. Liu, C. Lim, T. Ayi, P. Yap, Determining refractive index of single living cell using an integrated microchip. Sens. Actuators A 133(2), 349–354 (2007)

    Article  Google Scholar 

  19. W.J. Choi, D.I. Jeon, S.-G. Ahn, J.-H. Yoon, S. Kim, B.H. Lee, Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution. Opt. Express 18(22), 23285–23295 (2010)

    Article  ADS  Google Scholar 

  20. C. Lenaerts, F. Michel, B. Tilkens, Y. Lion, Y. Renotte, High transmission efficiency for surface plasmon resonance by use of a dielectric grating. Appl. Opt. 44(28), 6017–6022 (2005)

    Article  ADS  Google Scholar 

  21. K.H. Yoon, M.L. Shuler, S.J. Kim, Design optimization of nano-grating surface plasmon resonance sensors. Opt. Express 14(11), 4842–4849 (2006)

    Article  ADS  Google Scholar 

  22. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, H. Ming, Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt. Express 16(23), 18599–18604 (2008)

    Article  ADS  Google Scholar 

  23. T. Kan, N. Tsujiuchi, E. Iwase, K. Matsumoto, I. Shimoyama, Planar near-infrared surface plasmon resonance sensor with Si prism and grating coupler. Sens. Actuators B Chem. 144(1), 295–300 (2010)

    Article  Google Scholar 

  24. A. Dhawan, M. Canva, T. Vo-Dinh, Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt. Express 19(2), 787–813 (2011)

    Article  ADS  Google Scholar 

  25. A. Arriola, A. Rodriguez, N. Perez, T. Tavera, M.J. Withford, A. Fuerbach et al., Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors. Opt. Mater. Express 2(11), 1571–1579 (2012)

    Article  ADS  Google Scholar 

  26. F. Wu, L. Liu, L. Feng, D. Xu, N. Lu, Improving the sensing performance of double gold gratings by oblique incident light. Nanoscale 7(30), 13026–13032 (2015)

    Article  ADS  Google Scholar 

  27. A. Bijalwan, V. Rastogi, Sensitivity enhancement of a conventional gold grating assisted surface plasmon resonance sensor by using a bimetallic configuration. Appl. Opt. 56(35), 9606–9612 (2017)

    Article  ADS  Google Scholar 

  28. M.S. Hamed, G.T. Mola, Copper sulphide as a mechanism to improve energy harvesting in thin film solar cells. J. Alloy. Compd. 802, 252–258 (2019)

    Article  Google Scholar 

  29. S.O. Oseni, G.T. Mola, Bimetallic nanocomposites and the performance of inverted organic solar cell. Compos. B Eng. 172, 660–665 (2019)

    Article  Google Scholar 

  30. M.W. Dlamini, G.T. Mola, Near-field enhanced performance of organic photovoltaic cells. Phys. B 552, 78–83 (2019)

    Article  ADS  Google Scholar 

  31. S.Y. Lee, J.J. Amsden, S.V. Boriskina, A. Gopinath, A. Mitropolous, D.L. Kaplan et al., Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles. Proc. Natl. Acad. Sci. 107(27), 12086–12090 (2010)

    Article  ADS  Google Scholar 

  32. P.B. Johnson, R.-W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  33. W. Luo, R. Wang, H. Li, J. Kou, X. Zeng, H. Huang et al., Simultaneous measurement of refractive index and temperature for prism-based surface plasmon resonance sensors. Opt. Express 27(2), 576–589 (2019)

    Article  ADS  Google Scholar 

  34. M. Zekriti, Temperature effects on the resolution of surface-plasmon-resonance-based sensor. Plasmonics 14(3), 763–768 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by University of Isfahan, Department of Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Malekmohammad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazem, S., Malekmohammad, M. & Soltanolkotabi, M. Theoretical and experimental study of a surface plasmon sensor based on Ag-MgF2 grating coupler. Appl. Phys. B 126, 96 (2020). https://doi.org/10.1007/s00340-020-07449-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07449-w

Navigation