Skip to main content
Log in

How Should We Select Conceptual Content for Biology High School Curricula?

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The excess of curriculum content is a well-known problem in high school biology. Some strategies to adjust the amount of content to the available classroom time have been proposed, but none has been widely accepted and applied. Furthermore, biology is frequently presented in high school not as an integrated science, but as a collection of unrelated sub-areas, say, zoology, botany, physiology, genetics, and evolution. In this paper, we advance a proposal on how to develop non-arbitrary, clear criteria for selecting conceptual content to be taught and learnt in order to make the biology high school curriculum more integrated and less loaded with content. We argue that we should adopt the idea of structuring concepts for seizing the prominent role some ideas play in biological thinking. We discuss how a hierarchical conceptual framework of biology can help us to identify key concepts as well as connections between these concepts that can allow students understand sub-areas of biology. We also advocate for establishing a balance between the concepts from functional and evolutionary biology, on the one hand, and concepts representing (i) systemic components, (ii) processes, and (iii) descriptive elements, on the other hand. Finally we exemplify how these criteria can be applied by providing a proposal for structuring concepts of biology as a whole and the theory of evolution in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Considering two 50-min classes a week along three high school years containing 200 days each, the minimum required by the Brazilian legislation (Lei de Diretrizes e Bases da Educação National Education Guidelines and Framework Law, Law n° 9.394 1996).

  2. It is in dispute if the uprising of the Modern Synthetic Theory of Evolution did actually unify biology as a science when considering the conceptual frameworks that guided academic research (Smocovitis 1996). On the one hand, some biological areas did not contribute as much as genetics or did not contribute at all to that new framework. On the other, many areas did not adopt the new framework promptly. However, as discussed by Ferreira and Selles (2005), the creation of the high school discipline of biology adopted the synthesis narrative, ignoring the conflicts and discussions among biologists that were already occurring at the time.

  3. This does not mean that teachers’ practical knowledge is to be dismissed. On the contrary, teacher knowledge provides invaluable context-sensitive information and, through reflection on practice, can achieve higher degree of generality (e.g., McIntyre 2005). But if we want clear guidelines for content selection that can be widely applied to all educational contexts, individual knowledge will not be enough, despite its relevance.

  4. Freely translated by the authors from the Spanish original: “[...] bastaría definir cuáles son los conceptos estructurantes de una ciencia, para poder definir los ‘objetivos a alcanzar’ en los diferentes cursos.”

  5. In the Spanish original: “De acuerdo a la perspectiva constructivista, esos conceptos estructurantes serán también construidos por el alumno al mismo tiempo que construye otros conocimientos.”

  6. In the Spanish original: “Los puntos del programa deben ser elegidos en función de esa construcción.”

  7. For our purposes here, we can use Pickett, Kolasa, and Jones’ (2007, p. 38) definition of a domain as “[...] the set of objects, relationships, and dynamics at specified spatial and temporal scales that are the subject of scientific inquiry.”

  8. The expression “constitutive theory” is a neutral expression to indicate that a certain theory is included into a more inclusive one. The three levels described by Scheiner are only a didactic simplification of a structure formed by a continuum of many levels. A constitutive theory can, thus, encompass several levels of increasingly specific constitutive theories.

  9. Except if those constitutive theories and models have importance in the students’ social context for reasons other than science learning, as we discuss in section 1.

  10. Niche construction has been disputed by some authors (e.g., Caponi 2016b) but has also been increasingly used, especially for connecting organismic, ecological and evolutionary accounts (e.g., Kylafis and Loreau 2008, 2011; Laland et al. 2008). For this latter reason, we make use of this concept as an example here.

  11. See Nicholson and Dupré (2018) for an account on a processual philosophy of biology that is relevant to the topic discussed here.

  12. We adopt a hierarchical approach in which each level of a system is nested into the level immediately above it (see Ahl and Allen 1996; Allen and Hoekstra 2015). There has been controversy lately on whether the notion of levels is indeed useful or whether it is a misleading idea. The latter position is called by Brooks (2017), who defend the concept of levels, “levels skepticism” (which can be found, e.g., in Ladyman and Ross 2007, Rueger and McGivern 2010, Potochnik and McGill 2012, Eronen 2015). The fact that the concept of levels has received relatively little theoretical and/or philosophical attention certainly does not help. Despite voiced concerns, we consider useful for our arguments to rely on the reference to levels, using this notion in the sense in which a property that characterizes a complex system is at a higher level than the properties characterizing components of a complex system or in the sense in which a system is itself a higher-level entity in relation to the entities that compose it.

  13. The chemical structures of nucleotides can be shown to students, but only to make it explicit the principle that the structure of a molecule affects its chemical affinity to other molecules.

  14. We can consider the concepts in this list as indispensable if we want students to understand the explanations biology offers. All the five general theories will provide the grounds to understand them through the connections of their own concepts with the ones included in this list.

  15. We should make it clear that we tackle this set of ideas from the perspective of an extended evolutionary synthesis (e.g., Pigliucci and Müller 2010), as one can see from the inclusion of concepts like contingency and bricolage in this list of structuring concepts. We should remind the readers, however, that we do not intend to propose here any exhaustive or definitive list, but rather a proposal to be discussed.

  16. Nonetheless, ideas like lineages of genes can find their places in the general theory of genetics, for example.

  17. A short definition of causal determinism suffices for our purposes in this paper: “Causal determinism is, roughly speaking, the idea that every event is necessitated by antecedent events and conditions together with the laws of nature.” (Hoefer 2016)

  18. The definition of randomness (and its relation to chance) is the subject of an ongoing debate in philosophy (see Eagle 2019) and will not be discussed in depth here. For our purposes, we can adopt the view expressed by Futuyma (2005, p. 225) as a working definition: “[...] scientists use chance, or randomness, to mean that when physical causes can result in any of several outcomes, we cannot predict what the outcome will be in any particular case.”

  19. They can be regarded as categorizations because we sort organisms into different lineages, while contingency is sorted apart from determinism and complete randomness, and geological time is sorted apart from human lifetime.

References

  • Ahl, V., & Allen, T. F. H. (1996). Hierarchy theory: a vision, vocabulary and epistemology. New York, NY: Columbia University Press.

  • Allen, T. F., H. & Hoekstra, T. W. (2015). Toward a unified ecology (2nd ed.). New York, NY: Columbia University Press.

  • American Association for the Advancement of Science (AAAS). (1993). Benchmarks for science literacy. New York, NY: Oxford University Press. http://www.project2061.org/publications/bsl/online/index.php. Accessed 16 June 2019.

  • Ariew, A. (2003). Ernst Mayr’s ‘ultimate/proximate’ distinction reconsidered and reconstructed. Biology and Philosophy, 18, 553–565.

    Google Scholar 

  • Arnellos, A., & El-Hani, C. N. (2018). Emergence, downward causation, and no brute facts in biological systems. In E. Vintiadis & C. Mekios (Eds.), Brute Facts (pp. 248–269). Oxford: Oxford University Press.

  • Arp, R. (2008). Life and the homeostatic organization view of biological phenomena. Cosmos and History: The Journal of Natural and Social Philosophy, 4(1–2), 260–286.

    Google Scholar 

  • Ayuso, G. E., & Banet, E. (2002). Alternativas a la enseñanza de la genética en educación secundaria. Enseñanza de las Ciencias, 20(1), 133–157.

    Google Scholar 

  • Beatty, J. (1995). The evolutionary contingency thesis. In G. Wolters & J. G. Lennox (Eds.), Concepts, theories, and rationality in the biological sciences (pp. 45–81). Pittsburgh, PA: University of Pittsburgh Press.

  • Beatty, J. (2006). Replaying life’s tape. The Journal of Philosophy, 103(7), 336–362.

    Google Scholar 

  • Bencze, L., El Halwany, S., Krstovic, M., Milanovic, M., Phillips, C., & Zouda, M. (2018). Estudantes agindo para abordar danos pessoais, sociais e ambientais relacionados à ciência e à tecnologia. In D. M. Conrado & N. F. Nunes-Neto (Eds.), Questões sociocientíficas - Fundamentos, propostas de ensino e perspectivas para ações sociopolíticas (pp. 515–559). Salvador: EDUFBA. http://repositorio.ufba.br:8080/ri/bitstream/ri/27202/1/questoes-sociocientificas-EDUFBA.pdf. Accessed 16 June 2019.

  • Bermudez, G. M. A., & De Longhi, A. L. (2006). Propuesta curricular de hipótesis de progresión para conceptos estructurantes de ecología. Campo abierto, 25(2),13–38.

  • Bermudez, G., & De Longhi, A. L. (2008). La educación ambiental y la ecología como ciencia. Una discusión necesaria para la enseñanza. Revista Electrónica de Enseñanza de las Ciencias, 7(2), 275–297.

    Google Scholar 

  • Bich, L. (2012). Complex emergence and the living organization: an epistemological framework for biology. Synthese, 185(2), 215–232.

  • Bizzo, N. (2011). Understanding and acceptance of evolution: research in geological time and cognition. In M. K. Patairiya, & M. I. Nogueira (Eds.). Sharing science: India-Brazil dialogue on public communication of science, technology, culture and society (pp. 79-94). New Delhi: National Council for Science & Technology Communication.

  • Bowler, P. (2009). Evolution: the history of an idea (25th Anniversary ed.). Berkeley, CA: University of California Press.

  • Brasil. (1996). Lei n° 9.394, de 20 de dezembro de 1996. Estabelece as diretrizes e bases da educação nacional. http://www.planalto.gov.br/ccivil_03/Leis/L9394.htm. Accessed 16 June 2019.

  • Brasil. (2000). Parâmetros curriculares nacionais – Ensino Médio. Brasília: Ministério da Educação http://portal.mec.gov.br/seb/arquivos/pdf/blegais.pdf. Accessed 16 June 2019.

    Google Scholar 

  • Brasil. (2002). PCN+ Ensino Médio: Ciências da natureza, matemática e suas tecnologias. Brasília: Ministério da Educação. http://portal.mec.gov.br/seb/arquivos/pdf/CienciasNatureza.pdf. Accessed 16 June 2019.

    Google Scholar 

  • Brigandt, I. (2018). Explanation of molecular processes without tracking mechanism operation. Philosophy of Science, 85(5), 984–997.

  • Brooks, D. S. (2017). In defense of levels: layer cakes and guilt by association. Biological Theory, 12, 142–156.

    Google Scholar 

  • Bruner, J. (1977). The process of education. Cambridge, MA: Harvard University Press.

  • Calcott, B. (2013). Why how and why aren’t enough: more problems with Mayr’s proximate-ultimate distinction. Biology and Philosophy, 28(5), 767–780.

  • Caponi, G. (2001). Biología Funcional vs. Biología Evolutiva. Episteme, 12, 23–46.

    Google Scholar 

  • Caponi, G. (2002). Explicación seleccional e explicación funcional: La teleología en la biología contemporánea. Episteme, 14, 57–88.

    Google Scholar 

  • Caponi, G. (2007). Física del organismo vs hermenéutica del viviente: El alcance del programa reduccionista en la biología contemporánea. História, Ciência, Saúde – Manguinhos, 14(2), 443–468.

    Google Scholar 

  • Caponi, G. (2008). La biología evolucionaria del desarrollo como ciencia de causas remotas. Signos Filosóficos, 10(20), 121–142.

  • Caponi, G. (2013). El concepto de presión selectiva y la dicotomía próximo-remoto. Revista de Filosofía Aurora, 25(36), 197–216.

    Google Scholar 

  • Caponi, G. (2016a). Lineages and systems - a conceptual discontinuity in biological hierarchies. In N. Eldredge, T. Pievani, E. Serrelli, & I. Tëmkin (Eds.), Evolutionary theory - a hierarchical perspective (pp. 47–62). Chicago, IL: The University of Chicago Press.

  • Caponi, G. (2016b). Subordinación explicativa de la construcción de nichos a la selección natural. Filosofia e História da Biologia, 11(2), 203–220.

    Google Scholar 

  • Carvalho, I. N., Nunes-Neto, N. F., & El-Hani, C. N. (2011). Como selecionar conteúdos de biologia para o ensino médio? Revista de Educação. Ciências e Matemática, 1(1), 67–100.

  • Carvalho, I. N., Nunes-Neto, N. F., & El-Hani, C. N. (2014). Padrões, processos e componentes sistêmicos no ensino médio de Biologia. In: Atas do IX Encontro Nacional de Pesquisa em Educação em Ciências (IX ENPEC). Águas de Lindóia: Associação Brasileira de Pesquisa em Educação Ciências. http://www.nutes.ufrj.br/abrapec/ixenpec/atas/resumos/R1408-1.pdf Accessed 26 March 2020.

  • Chevallard, Y. (1989). On didactic transposition theory: some introductory notes. In Proceedings of the International Symposium on Selected Domains of Research and Development in Mathematics Education (pp. 51-62). http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=122. Accessed 16 June 2019.

  • Chevallard, Y. (1998). La transposición didáctica: Del saber sabio al saber enseñado (3rd ed.). Buenos Aires: Aique Grupo Editor.

    Google Scholar 

  • Chiappetta, E. L., & Fittman, D. A. (1998). Clarifying the place of essential topics and unifying principles in high school biology. School Science and Mathematics, 98(1), 12–18.

  • Clément, P. (2006). Didactic transposition and the KVP model: conceptions as interactions between scientific knowledge, values and social practices. In Proceedings of the Summer School of ESERA (pp. 9–18). Braga: Universidade do Minho.

  • Cooper, G. J., El-Hani, C. N., & Nunes-Neto, N. F. (2016). Three approaches to the teleological and normative aspects of ecological functions. In N. Eldredge, T. Pievani, E. Serrelli, & I. Temkin (Eds.), Evolutionary theory: a hierarchical perspective (pp. 103–125). Chicago: University of Chicago Press.

  • Coll, C., Pozo, J. I., Sarabia, B., & Valls, E. (1992). Los contenidos em la reforma. Madrid: Grupo Santillana de Ediciones.

  • Conrado, D. M. (2017), Questões sociocientíficas na educação CTSA: Contribuições de um modelo teórico para o letramento científico crítico. Salvador: Graduate Studies Program in History, Philosophy and Science Teaching, UFBA/UEFS. PhD thesis. https://www.repositorio.ufba.br/ri/bitstream/ri/24732/1/Tese-DaliaMelissaConrado-2017-QSC-CTSA-Final.pdf. Accessed 16 June 2019.

  • Conrado, D. M., Nunes-Neto, N. F., & El-Hani, C. N. (2014). A aprendizagem baseada em problemas (ABP) como estratégia de formação do cidadão socioambientalmente responsável. Revista Brasileira de Pesquisa em Educação em Ciências, 14(2), 77–87.

  • Conrado, D. M., & Nunes-Neto, N. F. (2018). Questões sociocientíficas e dimensões conceituais, procedimentais e atitudinais dos conteúdos no ensino de ciências. In D. M. Conrado & N. F. Nunes-Neto (Eds.), Questões sociocientíficas - Fundamentos, propostas de ensino e perspectivas para ações sociopolítica s (pp. 77–118). Salvador: EDUFBA http://repositorio.ufba.br:8080/ri/bitstream/ri/27202/1/questoes-sociocientificas-EDUFBA.pdf . Accessed 26 March 2020.

  • Correa, C. A. (2012). Los conceptos estructurantes de ecología como fundamento conceptual y metodológico de la educación ambiental. Extramuros, 11, 67–84.

  • Corrigan, D., Dillon, J., & Gunstone, R. (Eds.). (2007). The re-emergence of values in science education. Rotterdam: Sense Publishers.

    Google Scholar 

  • Craver, C. F., & Bechtel, W. (2006). Mechanism. In S. Sarkar & J. Pfeifer (Eds.), Philosophy of science: an encyclopedia (pp. 469–478). New York, NY: Routledge.

  • Dodick, J. (2007). Understanding evolutionary change within the framework of geological time. McGill Journal of Education, 42(2), 245–264.

    Google Scholar 

  • Eagle, A. (2019). Chance versus randomness. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2019 ed.) https://plato.stanford.edu/archives/spr2019/entries/chance-randomness. Accessed 16 June 2019.

  • El-Hani, C. N., & Nunes-Neto, N. F. (2009). Function in biology: etiological and organizational perspectives. Acta Biologica Colombiana, 14S, 111–132.

  • El-Hani, C. N., Queiroz, J., & Emmeche, C. (2009). Genes, information, and semiosis. Tartu: Tartu University Press, Tartu Semiotics Library.

  • Erduran, S., & Dagher, Z. (2014). Reconceptualizing the Nature of Science for science education: scientific knowledge, practices and other family categories. Dordrecht: Springer.

    Google Scholar 

  • Eronen, M. I. (2015). Levels of organization: a deflationary account. Biology and Philosophy, 30(1), 39–58.

  • Ferreira, M. S., & Selles, S. E. (2005). Entrelaçamentos históricos das ciências biológicas com a disciplina escolar Biologia: Investigando a versão azul do BSCS. In Atas do V Encontro Nacional de Pesquisa em Educação em Ciências. Bauru: Associação Brasileira de Pesquisa em Educação em Ciências. http://www.nutes.ufrj.br/abrapec/venpec/conteudo/artigos/3/doc/p892.doc. Accessed 16 June 2019.

  • Futuyma, D. J. (2005). Evolution. Sunderland, MA: Sinauer.

  • Gagliardi, R. (1986). Los conceptos estructurales en el aprendizaje por investigación. Enseñanza de las Ciencias, 4(1), 30–35.

    Google Scholar 

  • Gess-Newsome, J., & Lederman, N. G. (1995). Biology teachers’ perceptions of subject matter structure and its relationship to classroom practice. Journal of Research in Science Teaching, 32(3), 301–325.

    Google Scholar 

  • Gould, S. J. (1989). Wonderful life: the Burgess Shale and the nature of history. New York, NY: WW Norton & Company.

  • Griffiths, P. E. (2001). Genetic information: a metaphor in search of a theory. Philosophy of Science, 68(3), 394–412.

  • Guimarães, M. D. M., Lima-Tavares, M., Nunes-Neto, N. F., Carmo, R. S., & El-Hani, C. N. (2008). A Teoria Gaia é um Conteúdo Legítimo no Ensino Médio de Ciências? Pesquisa em Educação Ambiental, 3(1), 75–108.

  • Hamilton, W. D. (1967). Extraordinary sex ratios. Science, 156, 477–488.

    Google Scholar 

  • Harlen, W. (Ed.). (2010). Principles and big ideas of science education. Hatfield: Association for Science Education.

    Google Scholar 

  • Hodson, D. (2011). Looking to the future: building a curriculum for social activism. Rotterdam: Sense Publishers.

    Google Scholar 

  • Hodson, D. (2018). Realçando o papel da ética e da política na educação científica: algumas considerações teóricas e práticas sobre questões sociocientíficas. In D. M. Conrado & N. F. Nunes-Neto (Eds.), Questões sociocientíficas - Fundamentos, propostas de ensino e perspectivas para ações sociopolíticas (pp. 27–57). Salvador: EDUFBA. http://repositorio.ufba.br:8080/ri/bitstream/ri/27202/1/questoes-sociocientificas-EDUFBA.pdf. Accessed 16 June 2019.

  • Hoefer, C. (2016). Causal determinism. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2016 ed.) https://plato.stanford.edu/archives/spr2016/entries/determinism-causal. Accessed 16 June 2019.

  • Humphreys, P. (1997). How properties emerge. Philosophy of Science, 64(1), 1–17.

    Google Scholar 

  • Irzik, G., & Nola, R. (2011). A family resemblance approach to the Nature of Science for science education. Science & Education, 20(7–8), 591–607.

    Google Scholar 

  • Jablonka, E. (2002). Information: Its interpretation, its inheritance, and its sharing. Philosophy of Science, 69(4), 578–605.

  • Jacob, F. (1977). Evolution and tinkering. Science, 196, 1161–1166.

    Google Scholar 

  • Kampourakis, K., & Reiss, M. J. (Eds.). (2018). Teaching biology in schools: global research, issues, and trends. New York, NY: Routledge.

  • Kelly, J. K. (2011). The breeder’s equation. Nature Education Knowledge, 4(5), 5.

    Google Scholar 

  • Kim, J. (2006). Emergence: core ideas and issues. Synthese, 151(3), 547–559.

    Google Scholar 

  • Kylafis, G., & Loreau, M. (2008). Ecological and evolutionary consequences of niche construction for its agent. Ecology Letters, 11(10), 1072–1081.

  • Kylafis, G., & Loreau, M. (2011). Niche construction in the light of niche theory. Ecology Letters, 14(2), 82–90.

  • Ladyman, J., & Ross, D. (2007). Every thing must go: metaphysics naturalized. Oxford: Oxford University Press.

    Google Scholar 

  • Laland, K. N., & Sterelny, K. (2006). Seven reasons (not) to neglect niche construction. Evolution, 60(9), 1751–1762.

  • Laland, K., Odling-Smee, J., & Gilbert, S. F. (2008). EvoDevo and niche construction: Building bridges. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 310(7), 549–566.

  • Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W., & Uller, T. (2011). Cause and effect in biology revisited: is Mayr’s proximate-ultimate dichotomy still useful? Science, 334, 1512–1516.

    Google Scholar 

  • Laland, K. N., Odling-Smee, J., Hoppitt, W., & Uller, T. (2013a). More on how and why: cause and effect in biology revisited. Biology and Philosophy, 28(5), 719–745.

  • Laland, K. N., Odling-Smee, J., Hoppitt, W., & Uller, T. (2013b). More on how and why: a response to commentaries. Biology and Philosophy, 28(5), 793–810.

  • Lederman, N. G. (2007). Nature of science: past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). New York, NY: Routledge.

  • Linhares, S. V., & Gewandsznajder, F. (2013). Biologia hoje, v. II (2nd ed.). São Paulo: Ática.

    Google Scholar 

  • Lopes, S. G. B. C., & Rosso, S. (2013). Bio, v. II (2nd ed.). São Paulo: Saraiva.

    Google Scholar 

  • Love, A. C., & Nathan, M. J. (2015). The idealization of causation in mechanistic explanation. Philosophy of Science, 82(5), 761–774.

    Google Scholar 

  • Mach, E. (1886/2014). On instruction in the classics and the sciences. In Popular scientific lectures (pp. 259–296). Cambridge: Cambridge University Press.

    Google Scholar 

  • Maricato, F. E., & Caldeira, A. M. A. (2017). O conceito de interação biológica/ecológica: contribuição aos estudos em epistemologia da biologia e ao ensino de biologia. Acta Scientiarum. Education, 39(4), 441–451.

  • Matthews, M. R. (1994). Science teaching: the role of history and philosophy of science. New York, NY: Routledge.

  • Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: the realization of the living. Dordrecht: D. Reidel.

    Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1987). The tree of knowledge: the biological roots of human understanding. Boston, MA: Shambala.

  • Mayr, E. (1961). Cause and effect in biology. Science, 134, 1501–1506.

    Google Scholar 

  • Mayr, E. (1982). The growth of biological thought: diversity, evolution, and inheritance. Cambridge, MA: Harvard University Press.

  • Mayr, E. (2004). What makes biology unique? New York, NY: Cambridge University Press.

  • Mayr, E. (1998). This is biology: the science of the living world. Cambridge, MA: Harvard University Press.

  • McIntyre, D. (2005). Bridging the gap between research and practice. Cambridge Journal of Education, 35(3), 357–382.

  • Mendonça, V. L. (2013). Biologia, v. III (2nd ed.). São Paulo: AJS.

    Google Scholar 

  • Moreira, M. A., & Axt, R. (1986). A questão das ênfases curriculares e a formação do professor de ciências. Caderno Catarinense de Ensino de Física, 3(2), 66–78.

  • Mortimer, E. F., & El-Hani, C. N. (Eds.). (2014). Conceptual profiles: a theory of teaching and learning scientific concepts. Dordrecht: Springer.

  • National Research Council (NRC). (1990). Fulfilling the promise: biology education in the nation’s schools. Washington, DC: National Academy Press. https://www.nap.edu/catalog/1533/fulfilling-the-promise-biology-education-in-the-nations-schools. Accessed 26 March 2020.

  • National Research Council (NRC). (1996). National science education standards. Washington, DC: National Academy Press. https://www.nap.edu/catalog/4962/national-science-education-standards. Accessed 26 March 2020.

  • Nicholson, D. J., & Dupré, J. (Eds.). (2018). Everything flows: towards a processual philosophy of biology. Oxford: Oxford University Press.

    Google Scholar 

  • Nunes-Neto, N. F., & El-Hani, C. N. (2009). O que é função? Debates na filosofia da biologia contemporânea. Scientiae Studia, 7(3), 353–401.

  • Nunes-Neto, N. F., & El-Hani, C. N. (2011). Functional explanations in biology, ecology, and Earth system science: contributions from philosophy of biology. In D. Krause & A. A. P. Videira (Eds.), Brazilian Studies in History and Philosophy of Science, Boston Studies in Philosophy of Science (Vol. 290, pp. 185–200). Dordrecht: Springer.

  • Nunes-Neto, N. F., Moreno, A., & El-Hani, C. N. (2014). Function in ecology: an organizational approach. Biology and Philosophy, 29, 123–141.

  • Pattee, H. H. (1973). Hierarchy theory: the challenge of complex systems. New York, NY: George Braziller.

  • Pedretti, E., & Nazir, J. (2011). Currents in STSE education: mapping a complex field, 40 years on. Science Education, 95(4), 601–626.

    Google Scholar 

  • Pickett, S. T. A., & McDonnell, M. J. (1989). Changing perspectives in community dynamics: a theory of successional forces. Trends in Ecology and Evolution, 4(8), 241–245..

  • Pickett, S. T. A., Kolasa, J., & Jones, C. G. (2007). Ecological understanding (2nd ed.). Burlington, VT: Elsevier.

  • Pigliucci, M. (2007). Do we need an extended synthesis? Evolution, 61(12), 2743–2749.

    Google Scholar 

  • Pigliucci, M. (2013). On the different ways of “doing theory” in biology. Biological Theory, 7(4), 287–297.

    Google Scholar 

  • Pigliucci, M., & Finkelman, L. (2014). The extended (evolutionary) synthesis debate: where science meets philosophy. BioScience, 64(6), 511–516.

    Google Scholar 

  • Pigliucci, M., & Müller, G. B. (2010). Evolution, the extended synthesis. Cambridge, MA: The MIT Press.

  • Potochnik, A., & McGill, B. (2012). The limitations of hierarchical organization. Philosophy of Science, 79(1), 120–140.

  • Reiss, M. J., & White, J. (2013). An aims-based curriculum: the significance of human flourishing for schools. London: IoE Press.

  • Rescher, N. (1996). Process metaphysics: an introduction to process philosophy. Albany, NY: State University of New York Press.

  • Ridley, M. (2004). Evolution (3rd ed.). Malden, MA: Blackwell Publishing.

  • Rosenthal, D. B. (1985). Evolution in high school biology textbooks: 1963-1983. Science Education, 69(5), 637–648.

    Google Scholar 

  • Rosenthal, D. B. (1990). What’s past is prologue: lessons from the history of biology education. The American Biology Teacher, 52(3), 151–155.

    Google Scholar 

  • Rueger, A., & McGivern, P. (2010). Hierarchies and levels of reality. Synthese, 176(3), 379–397.

  • Salthe, S. N. (1985). Evolving hierarchical systems. New York, NY: Columbia University Press.

  • Scheiner, S. M. (2010). Toward a conceptual framework for biology. The Quarterly Review of Biology, 85(3), 293–318.

    Google Scholar 

  • Scheiner, S. M., & Mindell, D. P. (Eds.). (2020). The theory of evolution: principles, concepts, and assumptions. Chicago, IL: The University of Chicago Press.

  • Scheiner, S. M., & Willig, M. R. (2008). A general theory of ecology. Theoretical Ecology, 1, 21–28.

    Google Scholar 

  • Scheiner, S. M., & Willig, M. R (2011). A general theory of ecology. In S. M. Scheiner & M. R. Willig (Eds.). The theory of ecology (pp.3–18). Chicago, IL: University of Chicago Press.

  • Smocovitis, V. B. (1996). Unifying biology: the evolutionary synthesis and evolutionary biology. Princeton, NJ: Princeton University Press.

  • Souza, M. L., & Freitas, D. (2001). Os conteúdos selecionados pelos professores de biologia para a construção do currículo escolar. In 24ª Reunião Anual da ANPEd (Associação Nacional de Pós-Graduação e Pesquisa em Educação). Caxambu: Associação Nacional de Pós-Graduação e Pesquisa em Educação http://docplayer.com.br/4893108-Os-conteudos-selecionados-pelos-professores-de-biologia-para-a-construcao-do-curriculo-escolar-marcos-lopes-de-souza-ufscar-denise-de-freitas.html. Accessed 16 June 2019.

    Google Scholar 

  • Stephan, A. (1998). Varieties of emergence in artificial and natural systems. Zeitschrift für Naturforschung C, 53(7-8), 639–656.

  • Swarts, F. A., Anderson, O. R., & Swetz, F. J. (1994). Evolution in secondary school biology textbooks of the PRC, the USA, and the latter stages of the USSR. Journal of Research in Science Teaching, 31(5), 475–505.

  • Thierry, B. (2005). Integrating proximate and ultimate causation: Just one more go! Current Science, 89(7), 1180–1183.

    Google Scholar 

  • Vasconcelos, S. D., & Souto, E. (2003). O livro didático de Ciências no ensino fundamental - Proposta de critérios para análise do conteúdo zoológico. Ciência & Educação, 9(1), 93–104.

    Google Scholar 

  • Young, M. (2013). Overcoming the crisis in curriculum theory: a knowledge-based approach. Journal of Curriculum Studies, 45(2), 101–118.

  • Young, M. (2014). Curriculum theory: What it is and why it is important. Cadernos de Pesquisa, 44(151), 190–201.

  • Zabala, A. (1998). A função social do ensino e a concepção sobre os processos de aprendizagem: Instrumentos de análise. In A. Zabala, A prática educativa: Como ensinar (pp. 27–52). Porto Alegre: Artmed.

  • Zamer, W. E., & Scheiner, S. M. (2014). A conceptual framework for organismal biology: Linking theories, models, and data. Integrative and Comparative Biology, 54(5), 736–756.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Daniela Lopes Scarpa, Gustavo Andrés Caponi and Marco Antônio Barzano for all the commentaries and contributions made during the defense of the dissertation from which this work is derived.

Funding

The Brazilian National Council of Scientific and Technological Development (CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, grant n. 465767/2014-1) and the Coordination for the Improvement of Higher Education Personnel (CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, grant n. 23038.000776/2017-54) provided support to INCT IN-TREE. CNEH received from CNPq a productivity in research grant (grant n. 303011/2017-3). INC received from CAPES a master’s degree grant. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ítalo Nascimento de Carvalho.

Ethics declarations

Conflict of Interest

The authors report no conflict of interest in the research from which this paper has been derived.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 The domain and fundamental principles of the theory of biology. Source: Scheiner (2010, p. 299)
Table 3 The domain and fundamental principles of the theory of genetics Source: Scheiner (2010, p. 303)
Table 4 The domain and fundamental principles of the theory of cells. Source: Scheiner (2010, p. 302)
Table 5 The domain and fundamental principles of a general theory of organisms and the subtheory of multicellular organisms. Source: Zamer and Scheiner (2014, p. 741)
Table 6 The domain and fundamental principles of the theory of ecology. Source: Scheiner and Willig (2011, p. 13)
Table 7 The domain and fundamental principles of the theory of evolution. Source: Scheiner and Mindell (2020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, Í.N., El-Hani, C.N. & Nunes-Neto, N. How Should We Select Conceptual Content for Biology High School Curricula?. Sci & Educ 29, 513–547 (2020). https://doi.org/10.1007/s11191-020-00115-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-020-00115-9

Navigation