Skip to main content
Log in

Hermitian manifolds with quasi-negative curvature

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this work, we show that along a particular choice of Hermitian curvature flow, the non-positivity of the first Ricci curvature will be preserved if the initial metric has Griffiths non-positive Chern curvature. If in addition, the first Ricci curvature is negative at a point, then the canonical line bundle is ample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Equations du type Monge-Ampère sur les variété s kählèriennes compactes (French). Bull. Sci. Math. (2) 102(1), 63–95 (1978)

    MathSciNet  MATH  Google Scholar 

  2. Bando, S.: On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature. J. Differ. Geom. 19(2), 283–297 (1984)

    Article  MathSciNet  Google Scholar 

  3. Birkar, C., Cascini, P., Hacon, C., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23, 405–468 (2010)

    Article  MathSciNet  Google Scholar 

  4. Cao, H.-D.: Limits of solutions of the Kähler-Ricci flow. J. Differ. Geom. 45, 257–272 (1997)

    Article  Google Scholar 

  5. Böhm, C., Wilking, B.: Nonnegative curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature. Geom. Funct. Anal. 17, 665–681 (2007)

    Article  MathSciNet  Google Scholar 

  6. Diverio, S., Trapani, S.: Quasi-negative holomorphic sectional curvature and positivity of the canonical bundle. J. Differ. Geom. 111(2), 303–314 (2019)

    Article  MathSciNet  Google Scholar 

  7. Gill, M.: Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Commun. Anal. Geom. 19(2), 277–303 (2011)

    Article  Google Scholar 

  8. Heier, G., Lu, S., Wong, B.: On the canonical line bundle and negative holomorphic sectional curvature. Math. Res. Lett. 17(6), 1101–1110 (2010)

    Article  MathSciNet  Google Scholar 

  9. Heier, G., Lu, S., Wong, B.: Kähler manifolds of semi-negative holomorphic sectional curvature. J. Differ. Geom. 104(3), 419–441 (2016)

    Article  Google Scholar 

  10. Heier, G., Lu, S., Wong, B., Zheng, F.: Reduction of manifolds with semi-negative holomorphic sectional curvature. Math. Ann. 372, 951 (2018). https://doi.org/10.1007/s00208-017-1638-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, M.-C., Streets, J.: Complex manifolds with negative curvature operator. Int. Math. Res. Notices, rnz331. https://doi.org/10.1093/imrn/rnz331

  12. Liu, G.: Compact Kähler manifolds with nonpositive bisectional curvature. Geom. Func. Anal. 24, 1591–1607 (2014)

    Article  Google Scholar 

  13. Mok, N.: The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional Curvature. J. Differ. Geom. 27, 179–214 (1988)

    Article  Google Scholar 

  14. Sherman, M., Weinkove, B.: Local Calabi and curvature estimates for the Chern-Ricci flow. N. Y. J. Math. 19, 565–582 (2013). MR3119098, Zbl 1281.53069

    MathSciNet  MATH  Google Scholar 

  15. Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. 13(3), 601–634 (2011)

    Article  MathSciNet  Google Scholar 

  16. Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern-Ricci form. J. Differ. Geom. 99(1), 125–163 (2015)

    Article  MathSciNet  Google Scholar 

  17. Tosatti, V., Yang, X.-K.: An extension of a theorem of Wu-Yau. J. Differ. Geom. 107(3), 573–579 (2017)

    Article  MathSciNet  Google Scholar 

  18. Ustinovskiy, Y.: The Hermitian curvature flow on manifolds with non-negative Griffiths curvature. Am. J. Math. 141(6), 1751–1775 (2019)

    Article  MathSciNet  Google Scholar 

  19. Wu, D.-M., Yau, S.-T.: Negative Holomorphic curvature and positive canonical bundle. Invent. Math. 204(2), 595–604 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wu, D.-M., Yau, S.-T.: A remark on our paper “Negative Holomorphic curvature and positive canonical bundle”. Commun. Anal. Geom. 24(4), 901–912 (2016)

    Article  Google Scholar 

  21. Yang, X., Zheng, F.: On real bisectional curvature for Hermitian manifolds. Trans. Am. Math. Soc. 371(4), 2703–2718 (2019)

    Article  MathSciNet  Google Scholar 

  22. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Jeffrey Streets for his interest in this work. He would like to thank Xiaokui Yang for pointing out the related results in [3]. Lastly, he would like to thank Yury Ustinovskiy for patiently answering his questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Chun Lee.

Additional information

Communicated by Ngaiming Mok.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hermitian manifolds with quasi-negative curvature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MC. Hermitian manifolds with quasi-negative curvature. Math. Ann. 380, 733–749 (2021). https://doi.org/10.1007/s00208-020-01997-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-01997-4

Mathematics Subject Classification

Navigation