Skip to main content
Log in

Massively parallel simulations for disordered systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Simulations of systems with quenched disorder are extremely demanding, suffering from the combined effect of slow relaxation and the need of performing the disorder average. As a consequence, new algorithms and improved implementations in combination with alternative and even purpose-built hardware are often instrumental for conducting meaningful studies of such systems. The ensuing demands regarding hardware availability and code complexity are substantial and sometimes prohibitive. We demonstrate how with a moderate coding effort leaving the overall structure of the simulation code unaltered as compared to a CPU implementation, very significant speed-ups can be achieved from a parallel code on GPU by mainly exploiting the trivial parallelism of the disorder samples and the near-trivial parallelism of the parallel tempering replicas. A combination of this massively parallel implementation with a careful choice of the temperature protocol for parallel tempering as well as efficient cluster updates allows us to equilibrate comparatively large systems with moderate computational resources.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

    ADS  Google Scholar 

  2. A.P. Young, ed., Spin Glasses and Random Fields (World Scientific, Singapore, 1997)

  3. R.A. Baños, A. Cruz, L.A. Fernandez, J.M. Gil-Narvion, A. Gordillo-Guerrero, M. Guidetti, D. Iñiguez, A. Maiorano, E. Marinari, V. Martín-Major et al., PNAS 109, 6452 (2012)

    ADS  Google Scholar 

  4. W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. B 90, 184412 (2014)

    ADS  Google Scholar 

  5. G. Parisi, N. Sourlas, Phys. Rev. Lett. 43, 744 (1979)

    ADS  Google Scholar 

  6. N.G. Fytas, V. Martín-Mayor, Phys. Rev. Lett. 110, 227201 (2013)

    ADS  Google Scholar 

  7. N.G. Fytas, V. Martín-Mayor, M. Picco, N. Sourlas, Phys. Rev. Lett. 116, 227201 (2016)

    ADS  Google Scholar 

  8. M. Baity-Jesi, E. Calore, A. Cruz, L.A. Fernandez, J.M. Gil-Narvion, A. Gordillo-Guerrero, D. Iñiguez, A. Maiorano, E. Marinari, V. Martín-Major et al. Janus Collaboration, Phys. Rev. Lett. 120, 267203 (2018)

    ADS  Google Scholar 

  9. M. Baity-Jesi, E. Calore, A. Cruz, L.A. Fernandez, J.M. Gil-Narvión, A. Gordillo-Guerrero, D. Iñiguez, A. Lasanta, A. Maiorano, E. Marinari, et al., PNAS 116, 15350 (2019)

    ADS  Google Scholar 

  10. T. Nattermann, inSpin Glasses and Random Fields, edited by A.P. Young (World Scientific, Singapore, 1997), p. 277

  11. M. Mézard, G. Parisi, M.A. Virasoro,Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)

  12. D.P. Landau, K. Binder,A Guide to Monte Carlo Simulations in Statistical Physics, 4th edn. (Cambridge University Press, Cambridge, 2015)

  13. A.K. Hartmann, H. Rieger,Optimization Algorithms in Physics (Wiley, Berlin, 2002)

  14. W. Janke, ed.,Rugged Free Energy Landscapes — Common Computational Approaches to Spin Glasses, Structural Glasses and Biological Macromolecules, Lect. Notes Phys. (Springer, Berlin, 2007), Vol. 736

  15. B.A. Berg, W. Janke, Phys. Rev. Lett. 80, 4771 (1998)

    ADS  Google Scholar 

  16. J. Houdayer, Eur. Phys. J. B 22, 479 (2001)

    ADS  Google Scholar 

  17. H.G. Katzgraber, M. Körner, A.P. Young, Phys. Rev. B 73, 224432 (2006)

    ADS  Google Scholar 

  18. R. Alvarez Baños, A. Cruz, L.A. Fernandez, J.M. Gil-Narvion, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor et al., J. Stat. Mech.: Theory Exp. 2010, P06026 (2010)

    Google Scholar 

  19. A. Sharma, A.P. Young, Phys. Rev. B 84, 014428 (2011)

    ADS  Google Scholar 

  20. W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. B 92, 094410 (2015)

    ADS  Google Scholar 

  21. K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996)

    ADS  Google Scholar 

  22. W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. E 92, 013303 (2015)

    ADS  MathSciNet  Google Scholar 

  23. K. Hukushima, Phys. Rev. E 60, 3606 (1999)

    ADS  Google Scholar 

  24. H.G. Katzgraber, S. Trebst, D.A. Huse, M. Troyer, J. Stat. Mech.: Theory Exp. 2006, P03018 (2006)

    Google Scholar 

  25. E. Bittner, A. Nussbaumer, W. Janke, Phys. Rev. Lett. 101, 130603 (2008)

    ADS  Google Scholar 

  26. I. Rozada, M. Aramon, J. Machta, H.G. Katzgraber, arXiv:1907.03906 (2019)

  27. K. Hukushima, Y. Iba, AIP Conf. Proc. 690, 200 (2003)

    ADS  Google Scholar 

  28. J. Machta, Phys. Rev. E 82, 026704 (2010)

    ADS  Google Scholar 

  29. W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. E 92, 063307 (2015)

    ADS  Google Scholar 

  30. L. Barash, J. Marshall, M. Weigel, I. Hen, New. J. Phys. 21, 073065 (2019)

    ADS  Google Scholar 

  31. L.Y. Barash, M. Weigel, M. Borovský, W. Janke, L.N. Shchur, Comput. Phys. Commun. 220, 341 (2017)

    ADS  Google Scholar 

  32. R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58, 86 (1987)

    ADS  Google Scholar 

  33. U. Wolff, Phys. Rev. Lett. 62, 361 (1989)

    ADS  Google Scholar 

  34. R.G. Edwards, A.D. Sokal, Phys. Rev. D 38, 2009 (1988)

    ADS  MathSciNet  Google Scholar 

  35. L. Chayes, J. Machta, Physica A 254, 477 (1998)

    ADS  Google Scholar 

  36. R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 57, 2607 (1986)

    ADS  MathSciNet  Google Scholar 

  37. S. Liang, Phys. Rev. Lett. 69, 2145 (1992)

    ADS  Google Scholar 

  38. J. Machta, C.M. Newman, D.L. Stein, J. Stat. Phys. 130, 113 (2008)

    ADS  MathSciNet  Google Scholar 

  39. Z. Zhu, A.J. Ochoa, H.G. Katzgraber, Phys. Rev. Lett. 115, 077201 (2015)

    ADS  Google Scholar 

  40. O. Redner, J. Machta, L.F. Chayes, Phys. Rev. E 58, 2749 (1998)

    ADS  Google Scholar 

  41. H.W.J. Blöte, L.N. Shchur, A.L. Talapov, Int. J. Mod. Phys. C 10, 1137 (1999)

    ADS  Google Scholar 

  42. F. Belletti, M. Cotallo, A. Cruz, L.A. Fernández, A.G. Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor et al., Comput. Sci. Eng. 11, 48 (2009)

    Google Scholar 

  43. M. Baity-Jesi, R.A. Baños, A. Cruz, L.A. Fernandez, J.M. Gil-Narvion, A. Gordillo-Guerrero, D. Iñiguez, A. Maiorano, F. Mantovani, E. Marinari et al., Comput. Phys. Commun. 185, 550 (2014)

    ADS  Google Scholar 

  44. M. Weigel, J. Comput. Phys. 231, 3064 (2012)

    ADS  Google Scholar 

  45. M. Bernaschi, G. Parisi, L. Parisi, Comput. Phys. Commun. 182, 1265 (2011)

    ADS  Google Scholar 

  46. T. Yavors’kii, M. Weigel, Eur. Phys. J. Special Topics 210, 159 (2012)

    ADS  Google Scholar 

  47. M. Baity-Jesi, L.A. Fernández, V. Martín-Mayor, J.M. Sanz, Phys. Rev. B 89, 014202 (2014)

    ADS  Google Scholar 

  48. M. Lulli, M. Bernaschi, G. Parisi, Comput. Phys. Commun. 196, 290 (2015)

    ADS  MathSciNet  Google Scholar 

  49. S.F. Edwards, P.W. Anderson, J. Phys. F 5, 965 (1975)

    ADS  Google Scholar 

  50. N. Kawashima, A.P. Young, Phys. Rev. B 53, R484 (1996)

    ADS  Google Scholar 

  51. M. Hasenbusch, A. Pelissetto, E. Vicari, J. Stat. Mech.: Theory Exp. 2008, L02001 (2008)

    Google Scholar 

  52. R.N. Bhatt, A.P. Young, Phys. Rev. B 37, 5606 (1988)

    ADS  Google Scholar 

  53. G. Parisi, Phys. Rev. Lett. 50, 1946 (1983)

    ADS  MathSciNet  Google Scholar 

  54. A.P. Young, Phys. Rev. Lett. 51, 1206 (1983)

    ADS  Google Scholar 

  55. B.A. Berg, A. Billoire, W. Janke, Phys. Rev. E 66, 046122 (2002)

    ADS  Google Scholar 

  56. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    ADS  Google Scholar 

  57. J. Machta, Phys. Rev. E 80, 056706 (2009)

    ADS  Google Scholar 

  58. P. Dupuis, Y. Liu, N. Plattner, J.D. Doll, Multiscale Model. Sim. 10, 986 (2012)

    Google Scholar 

  59. C. Predescu, M. Predescu, C.V. Ciobanu, J. Chem. Phys. 120, 4119 (2004)

    ADS  Google Scholar 

  60. A.D. Sokal, Functional Integration: Basics and Applications, inProceedings ofthe 1996 NATO Advanced Study Institute in Cargèse, edited by C. DeWitt-Morette, P. Cartier, A. Folacci (Plenum Press, New York, 1997), pp. 131–192

  61. W. Janke, inComputational Many-Particle Physics, edited by H. Fehske, R. Schneider, A. Weiße, Lect. Notes Phys. (Springer, Berlin, 2008), Vol. 739, pp. 79–140

  62. Y. Fang, S. Feng, K.-M. Tam, Z. Yun, J. Moreno, J. Ramanujam, M. Jarrell, Comput. Phys. Commun. 185, 2467 (2014)

    ADS  Google Scholar 

  63. M. Weigel, Phys. Rev. E 84, 036709 (2011)

    ADS  Google Scholar 

  64. CUDA zone, http://developer.nvidia.com/category/zone/cuda-zone

  65. M. Scarpino,OpenCL in Action: How to Accelerate Graphics and Computation Manning (Shelter Island, 2012)

  66. D.B. Kirk, W.W. Hwu,Programming Massively Parallel Processors (Elsevier, Amsterdam, 2010)

  67. M. McCool, J. Reinders, A. Robison,Structured Parallel Programming: Patterns for EfficientComputation (Morgan Kaufman, Waltham, MA, 2012)

  68. M. Weigel, inOrder, Disorder and Criticality, edited by Y. Holovatch (World Scientific, Singapore, 2018), Vol. 5, pp. 271–340

  69. J. Gross, J. Zierenberg, M. Weigel, W. Janke, Comput. Phys. Commun. 224, 387 (2018)

    ADS  Google Scholar 

  70. J.K. Salmon, M.A. Moraes, R.O. Dror, D.E. Shaw, inProceedingsof 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC’11) (ACM, New York, 2011), p. 16

  71. M. Manssen, M. Weigel, A.K. Hartmann, Eur. Phys. J. Special Topics 210, 53 (2012)

    ADS  Google Scholar 

  72. J. Gross, W. Janke, M. Bachmann, Comput. Phys. Commun. 182, 1638 (2011)

    ADS  Google Scholar 

  73. A. Galluccio, M. Loebl, J. Vondrák, Phys. Rev. Lett. 84, 5924 (2000)

    ADS  Google Scholar 

  74. M. Picco, arXiv:cond-mat/9802092 (1998)

  75. M. Kumar, R. Kumar, M. Weigel, V. Banerjee, W. Janke, S. Puri, Phys. Rev. E 97, 053307 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Weigel.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution to the Topical Issue “Recent Advances in the Theory of Disordered Systems”, edited by Ferenc Iglói and Heiko Rieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Gross, J., Janke, W. et al. Massively parallel simulations for disordered systems. Eur. Phys. J. B 93, 79 (2020). https://doi.org/10.1140/epjb/e2020-100535-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100535-0

Navigation