Skip to main content
Log in

Emulation of high-performance correlation-based quantum clustering algorithm for two-dimensional data on FPGA

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Clustering algorithms are used to classify the unlabeled data into a number of categories with polynomial time complexity. Quantum clustering algorithms are developed to improve the performance and to achieve higher gain. In this work, we implement the quantum k-means clustering algorithm on field-programmable gate array (FPGA) by exploiting the implicit parallelism of the FPGA technology to achieve high speed among the software-implemented recent proposals. To do that, we establish a new method to measure the inner product between two qubits which is based on the correlation between the Euclidean distance and the inner product. We also optimize the quantum gates in terms of speed and removing the discretization error. Experimental results show a reduction in the running time by 500× as compared to the classical k-means algorithm for the A1 standard dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), Evangelos Simoudis, Jiawei Han, and Usama Fayyad (Eds.). AAAI Press, pp. 226–231 (1996)

  2. Chen, J., Zhang, L., Liang, Y.: Full-duplex transceiver design: a GMM clustering approach. In: 2018 IEEE International Conference on Communication Systems (ICCS), Chengdu, China, 2018, pp. 433–438. https://doi.org/10.1109/iccs.2018.8689230

  3. Pakhira, M.K.: A linear time-complexity k-means algorithm using cluster shifting. In: 2014 International Conference on Computational Intelligence and Communication Networks, Bhopal, pp. 1047–1051 (2014)

  4. Bifet, A.: Machine Learning for Data Streams, Chapter 9. MIT Press, Cambridge (2018)

    Book  Google Scholar 

  5. Oshurko, I.: Quantum Machine Learning. Quantum Information and Computation Course (2016). https://pdfs.semanticscholar.org/776b/5c7b2966fd700980361aa32ee573edb70bf3.pdf

  6. Benioff, P.: Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 29, 515–546 (1982). https://doi.org/10.1007/BF01342185

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  8. Mahmud, N., El-Araby, E., Caliga, D.: Scaling reconfigurable emulation of quantum algorithms at high precision and high throughput. Quantum Eng 1(2), e19 (2019)

    Article  Google Scholar 

  9. Xin, T.: A novel approach for emulating quantum computers on classical platforms. Quantum Eng 1(2), e18 (2019)

    Article  Google Scholar 

  10. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  11. Van Meter, R., Itoh, K.M.: Fast quantum modular exponentiation. Phys. Rev. A 71(5), 052320 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Pilch, J., Długopolski, J.: An FPGA-based real quantum computer emulator. J. Comput. Electron. 18(1), 329–342 (2019)

    Article  Google Scholar 

  13. Lee, Y.H., Khalil-Hani, M., Marsono, M.N.: An FPGA-based quantum computing emulation framework based on serial-parallel architecture. Int. J. Reconfig. Comput. 2016, 5718124, 18 pages (2016)

  14. Hu, F., Wang, B.N., Wang, N., et al.: Quantum machine learning with D-wave quantum computer. Quantum Eng. 1(2), e12 (2019)

    Google Scholar 

  15. Britt, B.C.: Modeling viral diffusion using quantum computational network simulation. Quantum Eng. 2(1), e29 (2020)

    Article  Google Scholar 

  16. Wang, S.H., Long, G.L.: Big data and quantum computation. Chin. Sci. Bull. 60(5–6), 499–508 (2015)

    Article  Google Scholar 

  17. Coughlin, T: 175 zetabytes by 2025. Forbes (2018). https://www.forbes.com/sites/tomcoughlin/2018/11/27/175-zettabytes-by-2025/#283740d54597

  18. Aïmeur, E., Brassard, G., Gambs, S.: Quantum clustering algorithms. In: Proceedings of the 24th International Conference on Machine Learning, pp. 1–8 (2007). http://dx.doi.org/10.1145/1273496.1273497

  19. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  20. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  21. Tsai, C., Liao, Y., Chiang, M.: A quantum-inspired evolutionary clustering algorithm. In: 2013 International Conference on Fuzzy Theory and Its Applications (iFUZZY), Taipei, 2013, pp. 305–310. https://doi.org/10.1109/ifuzzy.2013.6825455

  22. Han, K.-H., Kim, J.-H.: A quantum-inspired evolutionary algorithm for a class of combinatorial optimization. Trans. Evol. Comput. 6, 580–593 (2002). https://doi.org/10.1109/TEVC.2002.804320

    Article  MathSciNet  Google Scholar 

  23. Khalid, A.U., Zilic, Z., Radecka, K.: FPGA emulation of quantum circuits. In: Proceedings of the IEEE International Conference on Computer Design (ICCD’04). IEEE Computer Society, Washington, DC, USA, pp. 310–315 (2004)

  24. MATLAB, 2017. an 9.3 (R2017b), Natick, Massachusetts: The MathWorks Inc

  25. Vivado. 2018.2. The Xilinx, Inc. https://www.xilinx.com/products/design-tools/vivado.html

  26. Zedboard. Xilinx, Inc. https://www.xilinx.com/products/boards-and-kits/1-8dyf-11.html

  27. Fränti, P., Sieranoja, S.: K-means properties on six clustering benchmark datasets. Appl. Intell. 48(12), 4743–4759 (2018). https://doi.org/10.1007/s10489-018-1238-7

    Article  MATH  Google Scholar 

  28. Jin, X., Han, J.: K-means clustering. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning. Springer, Boston (2011)

    Google Scholar 

  29. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: 19th SODA (2007), pp. 1027–1035

  30. Malinen, M.I., Mariescu-Istodor, R., Fränti, P.: K-means*: clustering by gradual data transformation. Pattern Recognit. 47, 3376–3386 (2014)

    Article  Google Scholar 

  31. Lai, J.Z., Huang, T.J., Liaw, Y.C.: A fast k-means clustering algorithm using cluster center displacement. Pattern Recognit. 42(11), 2551–2556 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talal Bonny.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonny, T., Haq, A. Emulation of high-performance correlation-based quantum clustering algorithm for two-dimensional data on FPGA. Quantum Inf Process 19, 179 (2020). https://doi.org/10.1007/s11128-020-02683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02683-9

Keywords

Navigation