Skip to main content
Log in

The Efficient Ionization Reaction of DTBA Achieved by Surface Plasmon Catalysis Effect

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

4,4’-Dithiobisbenzoic acid (DTBA) is equivalent to two 4-mercaptobenzoic acid (pMBA) molecules connected together after losing H+, and this bimolecular mechanism of DTBA efficiently promotes the ionization reaction. Under the irradiation of laser light, DTBA molecules are broken to form bimolecules similar to pMBA, and this kind of bimolecular coupling greatly increases the probability of binding with Ag NPs. Also, this molecule has the carboxylic acid group, which leads to a certain sensitivity to pH. In this article, through the comparison of DTBA and pMBA parallel experiments, it is clear that DTBA has better Raman activity, higher reaction efficiency, and more stable reaction than pMBA. The occurrence of this highly efficient ionization reaction under the monitoring of surface-enhanced Raman spectroscopy (SERS) provides a certain value for the progress of further related reactions, and it also has a wide range of applications in pH sensors and intracellular pH monitoring.

The study of efficient ionization reaction of 4,4’-dithiobisbenzoic acid with bimolecular structure

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ledesma C, Yang J, Chen D, Holmen A (2014) Recent approaches in mechanistic and kinetic studies of catalytic reactions using SSITKA technique. ACS Catal 4(12):4527–4547

    Article  CAS  Google Scholar 

  2. Portz A, Baur M, Rinke G, Abb S, Rauschenbach S, Kern K, Durr M (2018) Chemical analysis of complex surface-adsorbed molecules and their reactions by means of cluster-induced desorption/ionization mass spectrometry. Anal Chem 90(5):3328–3334

    Article  CAS  Google Scholar 

  3. Zhang Q, Blom DA, Wang H (2014) Nanoporosity-enhanced catalysis on subwavelength au nanoparticles: a Plasmon-enhanced spectroscopic study. Chem Mater 26(17):5131–5142

    Article  CAS  Google Scholar 

  4. Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ (2018) Localized surface Plasmon resonance in semiconductor nanocrystals. Chem Rev 118(6):3121–3207

    Article  CAS  Google Scholar 

  5. Gu XY, Liu JJ, Gao PF, Li YF, Huang CZ (2019) Gold triangular nanoplates based single-particle dark-field microscopy assay of pyrophosphate. Anal Chem 91:15798–15803

    Article  CAS  Google Scholar 

  6. Paul KK, Giri PK, Sugimoto H, Fujii M, Choudhury B (2019) Evidence for plasmonic hot electron injection induced superior visible light photocatalysis by g-C3N4 nanosheets decorated with Ag–TiO2(B) and Au–TiO2(B) nanorods. Sol Energy Mater Sol Cells 201:110053

    Article  CAS  Google Scholar 

  7. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  CAS  Google Scholar 

  8. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217

    Article  CAS  Google Scholar 

  9. Huang Y, Fang Y, Yang Z, Sun M (2010) Can p,p '-dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film? J Phys Chem C 114(42):18263–18269

    Article  CAS  Google Scholar 

  10. Samanta A, Maiti KK, Soh KS, Liao X, Chang Y-T (2011) Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew Chem Int Ed Engl 50(27):6089–6092

    Article  CAS  Google Scholar 

  11. Angelis FD, Gentile F, Mecarini F, Das G, Fabrizio ED (2011) Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics 5(11):682–687

    Article  Google Scholar 

  12. Polavarapu L, Porta AL, Novikov SM, Coronadopuchau M, Lizmarzán LM (2014) SERS: pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates (Small 15/2014). 10(15):3065–3071

  13. Rycenga M, Wang Z, Gordon E, Cobley CM, Schwartz AG, Lo CS, Xia Y (2010) Probing the photothermal effect of gold-based nanocages with surface-enhanced Raman scattering (SERS). Angew Chem Int Ed Engl 48(52):9924–9927

    Article  Google Scholar 

  14. Wang F, Widejko RG, Yang Z, Nguyen KT, Chen H, Fernando LP, Christensen KA, Anker JN (2012) Surface-enhanced raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles. Anal Chem 84(18):8013–8019

    Article  CAS  Google Scholar 

  15. Michota A, Bukowska J (2003) Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 34(1):21–25

    Article  CAS  Google Scholar 

  16. Turkowicz M, Jastrzebska I, Hryniewicka M, Kotowska U, Gudalewska D, Karpinska J (2019) Investigation of lipoic acid - 4-methoxybenzyl alcohol reaction and evaluation of its analytical usefulness. Food Chem 125750

  17. Zhang X, Yu Z, Ji W, Sui H, Cong Q, Wang X, Zhao B (2015) Charge-transfer effect on surface-enhanced Raman scattering (SERS) in an ordered Ag NPs/4-mercaptobenzoic acid/TiO2 system. J Phys Chem C 119(39):22439–22444

    Article  CAS  Google Scholar 

  18. Shen C, Zhang P, Sun Q, Bai S, Hor TSA, Liu X (2015) Recent advances in C-S bond formation via C-H bond functionalization and decarboxylation. Chem Soc Rev 44(1):291–314

    Article  CAS  Google Scholar 

  19. Kong DL, Cheng L, Wu H, Li Y, Liu L (2015) Metal-free yne-addition/1,4-aryl migration/decarboxylation cascade reaction of alkynoates with Csp3-H centers. Org Biomol Chem 14(7):2210–2217

    Article  Google Scholar 

  20. Maltzahn GV, Centrone A, Park JH, Ramanathan R, Bhatia SN (2009) SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 21(31):3175–3180

    Article  Google Scholar 

  21. Mehrvar L, Sadeghipari M, Tavassoli SH, Mohajerzadeh S (2017) Surface-enhanced Raman spectroscopy of dye molecules on Ag-modified silicon nanowire substrates: influence of photoinduced probe degradation on enhancement factors. J Raman Spectrosc 48(9):1171–1181

    Article  CAS  Google Scholar 

  22. Gu Z, Tian S, Zhou Q, Wei W, Zhao L, Li X, Zheng J (2013) Surface enhanced Raman scattering of molecules related to highly ordered gold cavities. J Raman Spectrosc 44(12):1682–1688

    Article  CAS  Google Scholar 

  23. Kleppisius A, Kick A, Mertig M (2017) Double-layer capacitance of pH-sensitive self-assembled thiol layers on gold determined by electrical impedance spectroscopy in a microfluidic channel. Phys Status Solidi (a) 214(9):1600921

    Article  Google Scholar 

Download references

Funding

This work was supported by the LiaoNing Revitalization Talents Program (Grant No. XLYC1807162), the Shenyang High-Level Innovative Talents Program (Grant No. RC180227), the National Natural Science Foundation of China (Grant No. 21671089 and 11974152), the Scientific Research Fund of Liaoning Province (Grant No. 2019-ZD-0487), the Liaoning Provincial Department of Education Project (Grant No. LJC201904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Song or Lixin Xia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, H., Ma, L. et al. The Efficient Ionization Reaction of DTBA Achieved by Surface Plasmon Catalysis Effect. Plasmonics 15, 1525–1532 (2020). https://doi.org/10.1007/s11468-020-01175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01175-x

Keywords

Navigation