Skip to main content
Log in

High precision and fast disparity estimation via parallel phase correlation hierarchical framework

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

When estimating the disparity of remote sensing images, known phase correlation (PC)-based disparity estimation methods are not fast and robust, such as hierarchical structure PC method and fixed window PC method. To tackle this problem, a parallel PC-based hierarchical framework is proposed, which includes two ideas: first, a weighted PC peak fitting algorithm is introduced for estimating the high precise disparity matrix efficiently and stably; second, a graphics processing unit-based parallel PC algorithm is integrated into the hierarchical framework for fast and robustly estimating high precise disparity map. Additionally, many stages of hierarchical framework, such as padding and reliable evaluation stages, are improved for improving the computational efficiency of disparity estimation system. In a large number of experiments, the results have shown that the efficiency of the proposed algorithm is on average 24 times faster than the compared state-of-the-art methods. Meanwhile, the precision of the proposed algorithm is also superior to or very close to the compared algorithms. The proposed algorithm has been successfully used in a unmanned aerial vehicle three-dimensional retrieval system, and the practice effect has also been verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.agisoft.com.

  2. http://photojournal.jpl.nasa.gov.

References

  1. Alba, A., Arce-Santana, E., Aguilar-Ponce, R.M., Campos-Delgado, D.U.: Phase-correlation guided area matching for real time vision and video encoding. J. Real Time Image Process. 9(4), 621–633 (2014)

    Article  Google Scholar 

  2. Alba, A., Vigueras-Gomez, J.F., Arce-Santana, E.R., Aguilar-Ponce, R.M.: Phase correlation with sub-pixel accuracy. Comput. Vis. Image Underst. 137(C), 76–87 (2015)

    Article  Google Scholar 

  3. Argyriou, V., Vlachos, T.: Motion estimation using quad-tree phase correlation. In: IEEE International Conference on Image Processing, pp. I–1081 (2005)

  4. Arunagiri, S., Jaloma, J.: Parallel GPGPU stereo matching with an energy-efficient cost function based on normalized cross correlation. In: IS&T/SPIE Electronic Imaging, pp. 86550X–86550X. International Society for Optics and Photonics (2013)

  5. Chen, T., Liu, Y., Li, J., Wu, P.: Fast narrow-baseline stereo matching using CUDA compatible GPUs. Commun. Comput. Inf. Sci. 2015, 190–200 (2015)

    Google Scholar 

  6. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Morgan Kaufmann, Burlington (2013)

    Google Scholar 

  7. Gareth, L.K., Morgan, J.G.L., Yan, H.S.: Precise sub-pixel disparity measurement from very narrow baseline stereo. IEEE Trans. Geosci. Remote Sens. 34(24), 3424–3433 (2010)

    Google Scholar 

  8. Gupta, R.K., Cho, S.Y.: Window-based approach for fast stereo correspondence. IET Comput. Vis. 7(2), 123–134 (2013)

    Article  Google Scholar 

  9. Hoge, W.S.: Subspace identification extension to the phase correlation method. IEEE Trans. Med. Imaging 22(2), 277–280 (2003)

    Article  Google Scholar 

  10. Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 920–932 (1994)

    Article  Google Scholar 

  11. Kuglin, C.D., Hines, D.C.: The phase correlation image alignment method. In: IEEE Conference on Cybernetics and Society, vol. 47 (1975)

  12. Lamberti, A., Vanlanduit, S., Pauw, B.D., Berghmans, F.: A novel fast phase correlation algorithm for peak wavelength detection of fiber Bragg grating sensors. Opt. Express 22(6), 7099–7112 (2014)

    Article  Google Scholar 

  13. Li, J., Liu, Y., Du, S., Wu, P., Xu, Z.: Hierarchical and adaptive phase correlation for precise disparity estimation of UAV images. IEEE Trans. Geosci. Remote Sens. 54(12), 7092–7104 (2016)

    Article  Google Scholar 

  14. Liu, J.G., Yan, H.: Robust phase correlation methods for sub-pixel feature matching. In: 2012 Proceeding of 1st Conference of Systems Engineering for Autonomous Systems, pp. 5943–5956 (2012)

  15. Liu, Y.G., Zhao, C.H., Huang, R.G., Di, B.F.: Rectification-free 3-dimensional reconstruction method based on phase correlation for narrow baseline image pairs. J. Univ. Electron. Sci. Technol. China 43(3), 262–267 (2014)

    Google Scholar 

  16. Masrani, D.K., Maclean, W.J.: A real-time large disparity range stereo-system using FPGAs. In: Narayanan, P.J., Nayar, S.K., Shum, H.Y. (eds.) Lecture Notes in Computer Science, p. 13. Springer, Berlin (2006)

    Google Scholar 

  17. Matsuo, K., Hamada, T., Miyoshi, M., Shibata, Y., Oguri, K.: Accelerating phase correlation functions using GPU and FPGA. In: NASA/ESA Conference on Adaptive Hardware and Systems, pp. 433–438 (2009)

  18. Muquit, M.A., Shibahara, T., Aoki, T.: A high-accuracy passive 3D measurement system using phase-based image matching. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89(3), 686–697 (2006)

    Article  Google Scholar 

  19. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU computing. Proc. IEEE 96(5), 879–899 (2008)

    Article  Google Scholar 

  20. Ren, J., Vlachos, T., Zhang, Y., Zheng, J., Jiang, J.: Gradient-based subspace phase correlation for fast and effective image alignment. J. Vis. Commun. Image Represent. 25(7), 1558–1565 (2014)

    Article  Google Scholar 

  21. Schubert, F., Mikolajczyk, K.: Benchmarking GPU-based phase correlation for homography-based registration of aerial imagery. In: Computer Analysis of Images and Patterns, pp. 83–90. Springer (2013)

  22. Shibahara, T., Aoki, T., Nakajima, H., Kobayashi, K.: A high-accuracy stereo correspondence technique using 1D band-limited phase-only correlation. IEICE Electron. Express 5(4), 125–130 (2008)

    Article  Google Scholar 

  23. Stone, H.S., Orchard, M.T., Chang, E.C., Martucci, S.A.: A fast direct Fourier-based algorithm for subpixel registration of images. IEEE Trans. Geosci. Remote Sens. 39(10), 2235–2243 (2001)

    Article  Google Scholar 

  24. Takita, K.: A sub-pixel correspondence search technique for computer vision applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87(8), 1913–1923 (2004)

    Google Scholar 

  25. Tong, X., Ye, Z., Xu, Y., Liu, S., Li, L., Xie, H., Li, T.: A novel subpixel phase correlation method using singular value decomposition and unified random sample consensus. IEEE Trans. Geosci. Remote Sens. 53(8), 4143–4156 (2015)

    Article  Google Scholar 

  26. Tzimiropoulos, G., Argyriou, V., Zafeiriou, S., Stathaki, T.: Robust FFT-based scale-invariant image registration with image gradients. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1899–1906 (2010)

    Article  Google Scholar 

  27. Wei, P., Kaihuai, Q., Yao, C.: An adaptable-multilayer fractional fourier transform approach for image registration. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 400–414 (2009)

    Article  Google Scholar 

  28. Yan, H., Liu, J.G., Morgan, G., Liu, C.C.: High quality DEM generation from PCIAs. In: 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4950–4953 (2012)

  29. Yu, W., Xu, B.: A sub-pixel stereo matching algorithm and its applications in fabric imaging. Mach. Vis. Appl. 20(4), 261–270 (2009)

    Article  Google Scholar 

  30. Zhou, J.L., Wu, M., Zhou, H.P.: Research on fast dense stereo matching technique using adaptive mask. Pattern Recognit. Artif. Intell. 27(1), 11–20 (2014)

    Google Scholar 

  31. Zhu, Z., Ge, Z., Chen, S., Sun, X.: Research on CUDA-based image parallel dense matching. In: Chinese Automation Congress (CAC), pp. 482–486. IEEE (2013)

Download references

Acknowledgements

Thank the Editor and Reviewers for spending time and effort handling this paper. Thank Yixuan Li, Haorong Wang and Shuangli Du for helping us proofread manuscript. Additionally, thank Tao Chen and Baojiang Liu for the technique support. This work was supported in part by the National Natural Science Foundation of China under Grants 61801279, 61860206007, 61571313 and u1633126, in part by the Shanxi Province Science Foundation under Grant 201801D221160, and in part by Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (STIP) under Grant 2019L0471, and in part by Shanxi University of Finance and Economics Research Fund for Young Scholars under Grant QN-2018005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiguang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, Y. High precision and fast disparity estimation via parallel phase correlation hierarchical framework. J Real-Time Image Proc 18, 463–479 (2021). https://doi.org/10.1007/s11554-020-00972-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-00972-1

Keywords

Navigation