Skip to main content
Log in

New Insights into the Remediation of Water Pollutants using Nanobentonite Incorporated Nanocellulose Chitosan Based Aerogel

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Dyes, organic solvents and oils pose a serious threat to the water resources and this is of immense global concern. For the removal of such harmful materials from wastewater, a novel aerogel was synthesized from a hydrogel precursor, formed by incorporating nano bentonite into the dialdehyde nanocellulose and carboxymethyl chitosan mesh. The material showed exceptional adsorption capacity towards diverse pollutants like dyes, organic solvents, and oils. This ultralight aerogel yielded maximum dye removal capacity up to 29.842 g g-1 and 20.927 g g-1 within the first 5 min of the reaction, over a wide range of pH towards Bromophenol blue and Direct Blue 6 respectively and up to 50 times of its own weight in case of oil and organic solvents. This eco-friendly aerogel showed a slight drop in the adsorption capacity after ten cycles of oil and organic solvents, which paves a path in its application in the removal of multiple classes of the pollutant from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmaruzzaman M, Gupta VK (2011) Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res 50(24):13589–13613

    Article  CAS  Google Scholar 

  2. Asfaram A, Ghaedi M, Agarwal S, Tyagi I, Gupta VK (2015) Removal of basic dye auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv 5(24):18438–18450

    Article  CAS  Google Scholar 

  3. Bethi B, Manasa V, Srinija K, Sonawane SH (2018) Intensification of rhodamine-B dye removal using hydrodynamic cavitation coupled with hydrogel adsorption. Chem Eng Process Process Intensifi 134(December):51–57

    Article  CAS  Google Scholar 

  4. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    Article  CAS  PubMed  Google Scholar 

  5. Chanpiwat P, Himeno S, Sthiannopkao S (2015) Arsenic and other metals’ presence in biomarkers of cambodians in arsenic contaminated areas. Int J Environ Res Public Health 12(11):14285–14300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dhananasekaran S, Palanivel R, Pappu S (2016) Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by α-chitin nanoparticles. J Advert Res 7(1):113–124

    Article  CAS  Google Scholar 

  7. Dil EA, Ghaedi M, Ghaedi AM, Asfaram A, Goudarzi A, Hajati S, Soylak M, Agarwal S, Gupta VK (2016) Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: analysis by derivative spectrophotometry. J Ind Eng Chem 34(February):186–197

    Article  CAS  Google Scholar 

  8. El-Gamal SMA, Amin MS, Ahmed MA (2015) Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. J Environ Chem. https://www.sciencedirect.com/science/article/pii/S2213343715001621.

  9. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    Article  CAS  Google Scholar 

  10. Ghaedi M, Hajjati S, Mahmudi Z, Tyagi I, Agarwal S, Maity A, Gupta VK (2015) Modeling of competitive ultrasonic assisted removal of the dyes—methylene blue and safranin-O using Fe3O4 nanoparticles. Chem Eng J 268(May):28–37

    Article  CAS  Google Scholar 

  11. Gupta VK, Jain CK, Ali I, Chandra S, Agarwal S (2002) Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Res 36(10):2483–2490

    Article  CAS  PubMed  Google Scholar 

  12. Gupta VK, Ali I, Saleh TA, Siddiqui MN, Agarwal S (2013) Chromium removal from water by activated carbon developed from waste rubber tires. Environ Sci Pollut Res 20(3):1261–1268

    Article  CAS  Google Scholar 

  13. Gupta VK, Atar N, Yola ML, Üstündaǧ Z, Uzun L (2014) A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48(1):210–217

    Article  CAS  PubMed  Google Scholar 

  14. Gupta VK, Nayak A, Agarwal S, Tyagi I (2014) Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J Colloid Interface Sci 417(March):420–430

    Article  CAS  PubMed  Google Scholar 

  15. Gupta VK, Rastogi A, Dwivedi MK, Mohan D (1997) Process development for the removal of zinc and cadmium from wastewater using slag—a blast furnace waste material. Sep Sci Technol 32(17):2883–2912

    Article  CAS  Google Scholar 

  16. Iqbal MJ, Ashiq MN (2007) Adsorption of dyes from aqueous solutions on activated charcoal. J Hazard Mater 139(1):57–66

    Article  CAS  PubMed  Google Scholar 

  17. Jiao Y, Wan C, Li J (2016) Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable adsorbent. Mater Des . https://www.sciencedirect.com/science/article/pii/S0264127516307663.

  18. Kalme SD, Parshetti GK, Jadhav SU, Govindwar SP (2007) Biodegradation of benzidine based dye direct blue-6 by pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98(7):1405–1410

    Article  CAS  PubMed  Google Scholar 

  19. Khan A, Wang J, Li J, Wang X, Chen Z, Alsaedi A, Hayat T, Chen Y, Wang Z (2017) The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review. Environ Sci Pollut Res Int 24(9):7938–7958

    Article  CAS  PubMed  Google Scholar 

  20. Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J Hazard Mater 183(1):402–409

    Article  CAS  PubMed  Google Scholar 

  21. Lei W, Portehault D, Liu D, Qin S, Chen Y (2013) Porous boron nitride nanosheets for effective water cleaning. Nat Commun 4:1777

    Article  PubMed  CAS  Google Scholar 

  22. Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym. https://www.sciencedirect.com/science/article/pii/S0144861711007016.

  23. Mazaheri H, Ghaedi M, Asfaram A, Hajati S (2016) Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: using ultrasound power and optimization by central composite design. J Mol Liquids. https://doi.org/10.1016/j.molliq.2016.03.050

    Article  Google Scholar 

  24. Mittal A, Mittal J, Malviya A, Gupta VK (2010) Removal and recovery of chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci 344(2):497–507

    Article  CAS  PubMed  Google Scholar 

  25. Mohammadi N, Khani H, Gupta VK, Amereh E, Agarwal S (2011) Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J Colloid Interface Sci 362(2):457–462

    Article  CAS  PubMed  Google Scholar 

  26. Nekouei F, Nekouei S, Tyagi I, Gupta VK (2015) Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J Mol Liquids 201:124–133

    Article  CAS  Google Scholar 

  27. Oussalah A, Boukerroui A, Aichour A, Djellouli B (2019) Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: adsorption and reusability studies. Int J Biol Macromol 124(March):854–862

    Article  CAS  PubMed  Google Scholar 

  28. Priya B, Gupta VK, Pathania D, Singha AS (2014) Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 109(August):171–179

    Article  CAS  PubMed  Google Scholar 

  29. Rajendran S, Mansoob Khan M, Gracia F, Qin J, Gupta VK, Arumainathan S (2016) Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6(1):31641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rizzi V, Prasetyanto EA, Chen P, Gubitosa J, Fini P, Agostiano A, De Cola L, Cosma P (2019) Amino grafted MCM-41 as highly efficient and reversible ecofriendly adsorbent material for the direct blue removal from wastewater. J Mol Liquids 273(January):435–446

    Article  CAS  Google Scholar 

  31. Ruan C-Q, Strømme M, Lindh J (2018) Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of congo red dye. Carbohydr Polym 181(February):200–207

    Article  CAS  PubMed  Google Scholar 

  32. Saravanan R, Gupta VK, Narayanan V, Stephen A (2013) Comparative study on photocatalytic activity of ZnO prepared by different methods. J Mol Liquids 181:133–141

    Article  CAS  Google Scholar 

  33. Saravanan R, Gupta VK, Mosquera E, Gracia F (2014) Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J Mol Liquids 198:409–412

    Article  CAS  Google Scholar 

  34. Saravanan R, Gupta VK, Narayanan V, Stephen A (2014) Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3. J Taiwan Inst Chem Eng 45(4):1910–1917

    Article  CAS  Google Scholar 

  35. Saravanan R, Gupta VK, Prakash T, Narayanan V, Stephen A (2013) Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J Mol Liquids 178(February):88–93

    Article  CAS  Google Scholar 

  36. Saravanan R, Joicy S, Gupta VK, Narayanan V, Stephen A (2013) Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater Sci Eng C 33(8):4725–4731

    Article  CAS  Google Scholar 

  37. Saravanan R, Karthikeyan N, Gupta VK, Thirumal E, Thangadurai P, Narayanan V, Stephen A (2013) ZnO/Ag Nanocomposite: An Efficient Catalyst for Degradation Studies of Textile Effluents under Visible Light. Mater Sci Eng, C 33(4):2235–2244

    Article  CAS  Google Scholar 

  38. Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C 33(1):91–98

    Article  CAS  Google Scholar 

  39. Saravanan R, Mansoob Khan M, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) ZnO/Ag/Mn 2 O 3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv 5(44):34645–34651

    Article  CAS  Google Scholar 

  40. Saravanan R, Mansoob Khan M, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 452:126–133

    Article  CAS  PubMed  Google Scholar 

  41. Saravanan R, Sacari E, Gracia F, Mansoob Khan M, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liquids 221(September):1029–1033

    Article  CAS  Google Scholar 

  42. Saravanan R, Thirumal E, Gupta VK, Narayanan V, Stephen A (2013) The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J Mol Liquids 177(January):394–401

    Article  CAS  Google Scholar 

  43. Shahnaz T, Patra C, Sharma V (2020) A comparative study of raw, acid-modified and EDTA-complexed acacia auriculiformis biomass for the removal of hexavalent chromium. Chemistry. https://doi.org/10.1080/02757540.2020.1723560

    Article  Google Scholar 

  44. Strand SP, Vandvik MS, Vårum KM, Østgaard K (2001) Screening of chitosans and conditions for bacterial flocculation. Biomacromol 2(1):126–133

    Article  CAS  Google Scholar 

  45. Suhas, Gupta VK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076

    Article  CAS  PubMed  Google Scholar 

  46. Turunen AW, Jula A, Suominen AL, Männistö S, Marniemi J, Kiviranta H, Tiittanen P et al (2013) Fish consumption, omega-3 fatty acids, and environmental contaminants in relation to low-grade inflammation and early atherosclerosis. Environ Res 120:43–54

    Article  CAS  PubMed  Google Scholar 

  47. Wei D, Zhao C, Khan A, Sun L, Ji Y, Ai Y, Wang X (2019) Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: a DFT and MD simulation study. Chem Eng J 375(November):121964

    Article  CAS  Google Scholar 

  48. Yang H, Sheikhi A, van de Ven TGM (2016) Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir 32(45):11771–11779

    Article  CAS  PubMed  Google Scholar 

  49. You L, Wu Z, Kim T, Lee K (2006) Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane. J Colloid Interface Sci 300(2):526–535

    Article  CAS  PubMed  Google Scholar 

  50. Zhai T, Zheng O, Cai Z, Xia H, Gong S (2016) Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydr Polym 148(September):300–308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the monetary assistance from Indian Institute of Technology Guwahati, India (Grant No. BSBESUGIITG01213xSEN001) to undertake the study. The assistance with high throughput instrumentation of The Central Instrumentation Facility, Indian Institute of Technology Guwahati is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Senthilmurugan Subbiah or Selvaraju Narayanasamy.

Ethics declarations

Conflict of interest

The authors assert no conflicting, contending and fiscal interests in any capacity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Shahnaz, T., Subbiah, S. et al. New Insights into the Remediation of Water Pollutants using Nanobentonite Incorporated Nanocellulose Chitosan Based Aerogel. J Polym Environ 28, 2008–2019 (2020). https://doi.org/10.1007/s10924-020-01740-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01740-9

Keywords

Navigation