Skip to main content
Log in

Structural Refinement, Morphological Features, Optical Properties, and Adsorption Capacity of α-Ag2WO4 Nanocrystals/SBA-15 Mesoporous on Rhodamine B Dye

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

α-Ag2WO4 nanocrystals, mesoporous silica (SBA-15), and α-Ag2WO4/SBA-15 as a nanocomposite were prepared by sonochemical, hydrothermal, and in situ sonochemical methods respectively. Samples were characterized by X-ray diffraction (XRD), Rietveld refinement, micro-Raman, Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption, ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy, and Zeta potential. XRD patterns, Rietveld refinement, and XPS spectra confirmed the formation of α-Ag2WO4, SBA-15, and α-Ag2WO4/SBA-15. XPS spectra evidenced the formation of metallic silver during analysis. FE-SEM images illustrated the deposition of α-Ag2WO4 nanocrystals mainly on the external surface of SBA-15. N2 adsorption data showed that the textural properties of α-Ag2WO4/SBA-15 were similar to pure SBA-15. Zeta potential data demonstrated that all samples synthetized have negatively charged surface. The materials were tested as adsorbents for the dye cationic rhodamine B. The adsorption behavior of rhodamine B onto α-Ag2WO4, SBA-15, and α-Ag2WO4/SBA-15 correspond to Langmuir adsorption isotherm and pseudo-second-order kinetics. The maximum adsorption capacity of α-Ag2WO4/SBA-15 was up to 150 mg g−1 and 99% removal efficiency for RhB 20 mg L−1 in 15 min. Furthermore, 80% of RhB could be recuperated from adsorbents at pH 7.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.C. Foggi, M.T. Fabbro, L.P.S. Santos, Y.V.B. de Santana, C.E. Vergani, A.L. Machado, E. Cordoncillo, J. Andrés, E. Longo, Chem. Phys. Lett. 674, 125 (2017)

    CAS  Google Scholar 

  2. H. Chen, Y. Xu, Appl. Surf. Sci. 319, 319 (2014)

    CAS  Google Scholar 

  3. B.C.H. Ng, W.Y. Fan, CrystEngComm 18, 8010 (2016)

    CAS  Google Scholar 

  4. D.P. Dutta, A. Singh, A. Ballal, A.K. Tyagi, Eur. J. Inorg. Chem. 2014, 5724 (2014)

    CAS  Google Scholar 

  5. B.-Y. Wang, G.-Y. Zhang, G.-W. Cui, Y.-Y. Xu, Y. Liu, C.-Y. Xing, Inor. Chem. Front. 6, 209 (2019)

    CAS  Google Scholar 

  6. R.A. Rocca, J.C. Sczancoski, I.C. Nogueira, M.T. Fabbro, H.C. Alves, L. Gracia, L.P.S. Santos, C.P. de Sousa, J. Andrés, G.E. Luz Jr., E. Longo, L.S. Cavalcante, Catal. Sci. Techonol. 5, 4091 (2015)

    Google Scholar 

  7. N.G. Macedo, A.F. Gouveia, R.A. Roca, M. Assis, L. Gracia, J. Andrés, E.R. Leite, E. Longo, J. Phys. Chem. C 122, 8667 (2018)

    CAS  Google Scholar 

  8. V.M. Longo, C.C. de Foggi, M.M. Ferrer, A.F. Gouveia, R.S. André, W. Avansi, C.E. Vergani, A.L. Machado, J. Andrés, L.S. Cavalcante, A.C. Hernandes, E. Longo, J. Phys. Chem. A 118, 5769 (2014)

    CAS  PubMed  Google Scholar 

  9. L.E. da Silva, A.C. Catto, W. Avansi Jr., L.S. Cavalcante, V.R. Mastelaro, J. Andrés, K. Aguir, E. Longo, J. Alloy Compd. 683, 186 (2016)

    Google Scholar 

  10. L.S. Cavalcante, M.A.P. Almeida, W. Avansi Jr., R.L. Tranquilin, E. Longo, N.C. Batista, V.R. Mastelaro, M.S. Li, Inorg. Chem. 51, 10675 (2012)

    CAS  PubMed  Google Scholar 

  11. C. Jiang, J. Liang, Y. Qian, Solution Route to Semiconducting Nanomaterials, Nanocrystalline Materials., ed. By S. C. Tjong (Elsevier Science Ltd, Oxford, 2006) p. 1

  12. H. He, S. Xue, Z. Wu, C. Yu, K. Yang, G. Peng, W. Zhou, D. Li, Chinese. J. Catal. 37, 1841 (2016)

    CAS  Google Scholar 

  13. K. Vignesh, M. Kang, Mat. Sci. Eng. B 199, 30 (2015)

    CAS  Google Scholar 

  14. H. Xu, Y. Cao, J. Xie, J. Hu, Y. Li, D. Jia, Mater. Res. Bull. 102, 342 (2018)

    CAS  Google Scholar 

  15. B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Appl. Surf. Sci. 39, 175 (2017)

    Google Scholar 

  16. Y. Li, R. Jin, X. Fang, Y. Yang, M. Yang, X. Liu, Y. Xing, S. Song, J. Hazard. Mater. 313, 219 (2016)

    CAS  PubMed  Google Scholar 

  17. Y. Li, Y. Li, S. Ma, P. Wang, Q. Hou, J. Han, S. Zhan, J. Hazard. Mater. 338, 33 (2017)

    CAS  PubMed  Google Scholar 

  18. Y.Y. Lee, H.S. Jung, J.M. Kim, Y.T. Kang, Appl. Catal. B-Environ. 224, 594 (2018)

    CAS  Google Scholar 

  19. K.H. Chung, S. Jeong, B.-J. Kim, K.-H. An, Y.-K. Park, S.-C. Jung, Int. J. Hydrogen Energ. 43, 5873 (2018)

    CAS  Google Scholar 

  20. K.H. Chung, S. Jeong, B.-J. Kim, K.-H. An, Y.-K. Park, S.-C. Jung, Int. J. Hydrog. Energy 43, 11422 (2018)

    CAS  Google Scholar 

  21. S. Silvestre, B. Hennemann, N. Zanatta, E.L. Foleto, Water Air Soil. Pollut. 229, 40 (2018)

    Google Scholar 

  22. F.F.A. Aziz, A.A. Jalil, S. Triwahvono, M. Mohamed, Appl. Surf. Sci. 455, 84 (2018)

    CAS  Google Scholar 

  23. T. Jiang, M. Fang, Y. Li, Q. Zhao, L. Dai, J. Taiwan Inst. Chem. E. 80, 1031 (2017)

    CAS  Google Scholar 

  24. P. Lu, Z. Qu, Q. Wang, Y. Yuan, E. Cheng, M. Zhao, J. Inorg. Organomet. Polym. Mater. 29, 2116 (2019)

    CAS  Google Scholar 

  25. S.A.A. Vandarkuzhali, B. Viswanathan, M.P. Pachamuthu, S.C. Kishore, J. Inorg. Organomet. Polym. Mater. 30, 359 (2020)

    Google Scholar 

  26. L. Zhang, L. Xiao, Y. Zhang, L.J. France, Y. Yu, J. Long, D. Guo, X. Li, Energy Fuels 32, 678 (2018)

    CAS  Google Scholar 

  27. A. F. Soares Filho, J. F. Cruz Filho, M. S. Lima, L. M. Carvalho, L. K. R. Silva, J. S. Costa, T. C. M. Dantas, G. E. Luz Jr, Water Air Soil Pollut 229, 268 (2018)

  28. K.G. Vibulyaseak, S.B. Deepracha, M. Ogawa, J. Solid State Chem 270, 162 (2019)

    CAS  Google Scholar 

  29. L.V. de Souza, O. Tkachenko, B.N. Cardoso, T.M. Pizzolato, S.L.P. Dias, M.A.Z. Vasconcellos, L.T. Arenas, T.M.H. Costa, C.C. Moro, E.V. Benvenutti, Micropor. Mesopor. Mat. 287, 203 (2019)

    Google Scholar 

  30. Y. Y. Lee, H. S. Jung, Y. T. Kang, J. CO2 Util. 20, 163 (2017)

  31. L. Yu, X. Yang, D. Wang, J. Colloid Interface. Sci. 448, 525 (2018)

    Google Scholar 

  32. P. Devi, U. Das, A.K. Dalai, Chem. Eng. J. 346, 477 (2018)

    CAS  Google Scholar 

  33. G. Shi. Y. Bao, B. Chen, J. Xu, Reac. Kinet. Mech. 122, 289 (2017)

  34. C.R. Patil, C.V. Rode, Fuel 2017, 38 (2018)

    Google Scholar 

  35. J. Wang, C. Liu, S. Yang, X. Lin, W. Shi, J. Phys. Chem. Solids. 136, 109164 (2020)

    CAS  Google Scholar 

  36. W. Shi, C. Liu, M. Li, X. Lin, F. Guo, J. Shi, J. Hazard. Mater. https://doi.org/10.1016/j.jharmat.2019.121902

  37. X. Lin, C. Liu, J. Wang, S. Yang, J. Shi, Y. Hong, Sep. Purif. Technol. 226, 117 (2019)

    CAS  Google Scholar 

  38. W. Shi, M. Li, X. Huang, H. Ren, C. Yan, F. Guo, Chem. Eng. J. 382, 122960 (2020)

    Google Scholar 

  39. W. Shi, H. Ren, M. Li, K. Shu, Y. Xu, C. Han, Y. Tang, Chem. Eng. J. 382, 122876 (2020)

    CAS  Google Scholar 

  40. Y. Fang, Y. Cao, Q. Chen, Ceram. Int. 45, 22298 (2019)

    CAS  Google Scholar 

  41. A. Sreedevi, K.P. Vattappalam, T. Varghese, J. Electron. Mater. 47, 6328 (2018)

    CAS  Google Scholar 

  42. E. Longo, L.S. Cavalcante, D.P. Volanti, A.F. Gouveia, V.M. Longo, J.A. Varela, M.O. Orlandi, J. Andrés, Sci. Rep-UK 3, 1 (2013)

    Google Scholar 

  43. S. Jeong, K.-H. Chung, H. Lee, H. Park, K.-J. Jeon, Y.-K. Park, S.-C. Jung, Int. J. Hydrog. Energy 42, 17386 (2017)

    CAS  Google Scholar 

  44. A. Sreedevi, K.P. Priyanka, K.K. Babitha, S.I. Sankararaman, T. Varghese, Eur. Phys. J. B. 90, 102 (2017)

    Google Scholar 

  45. A. Sreedevi, K.P. Priyanka, K.K. Babitha, S. Ganesh, T. Varghese, Micron 88, 1 (2016)

    CAS  Google Scholar 

  46. J. Andrés, L. Gracia, P. Gonzalez-Navarrete, V.M. Longo, W. Avansi Jr., D.P. Volanti, M.M. Ferrer, P.S. Lemos, F.A.L. Porta, A.C. Hernandes, E. Longo, Sci. Rep-UK 4, 5391 (2014)

    Google Scholar 

  47. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)

    CAS  PubMed  Google Scholar 

  48. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1996)

    Google Scholar 

  49. A. Chirieac, B. Dragoi, A. Ungureanu, C. Ciotonea, I. Mazilu, S. Royer, A.S. Mamede, E. Rombi, I. Ferino, E. Dumitriu, J. Catal. 339, 270 (2016)

    CAS  Google Scholar 

  50. S. Singh, R. Kumar, H.D. Setiabudi, S. Nanda, D.V.N. Vo, Appl. Catal. A-Gen. 559, 57 (2018)

    CAS  Google Scholar 

  51. F.C.M. Silva, M.J. Costa, L.K.R. Silva, A.M. Batista, G.E. Luz Jr., S.N. Appl, Sci. 1, 654 (2019). https://doi.org/10.1007/s42452-019-0677-z

    Article  CAS  Google Scholar 

  52. G.E. Luz Jr., S.H. Lima, A.C.R. Melo, A.S. Araujo, V.J. Fernandes Jr., J. Mater. Sci 45, 1117 (2010)

    CAS  Google Scholar 

  53. J. Zhu, T. Wang, X. Xu, P. Xião, J. Li, Appl. Catal. B 130–131, 197 (2013)

    Google Scholar 

  54. M.M. Araújo, L.K.R. Silva, J.C. Sczancoski, M.O. Orlandi, E. Longo, A.G.D. Santos, R.S. Santos, G.E. Luz Jr., L.S. Cavalcante, Appl. Surf. Sci. 389, 1137 (2016)

    Google Scholar 

  55. T. M. S. Costa, M. S. Lima, J. F. Cruz Filho, L. F. Silva, R. S. Santos, G. E Luz Jr., J. Photoch. Photobio. A 364, 461 (2018)

  56. W. Hamza, N. Dammak, H.B. Hadjltaiet, M. Eloussaief, M. Benzina, Ecotox. Environ. Safe. 163, 365 (2018)

    CAS  Google Scholar 

  57. Z.-L. Cheng, Y.-X. Li, Z. Liu, Ecotox. Environ. Safe. 148, 585 (2018)

    CAS  Google Scholar 

  58. S. H. da Silva Filho, P. Vinaches, S. B. C. Pergher, Mater.Lett. 227, 258 (2018)

  59. J. Chen, X. Zhu, Food Chem. 200, 10 (2016)

    CAS  PubMed  Google Scholar 

  60. Z.L. Cheng, Y.-X. Li, Z. Liu, J Alloy Compd. 708, 255 (2017)

    CAS  Google Scholar 

  61. A.K. Dutta, U.K. Ghorai, K.K. Chattopadhyay, D. Banerjee, Physica E 99, 6 (2018)

    CAS  Google Scholar 

  62. Q. Qin, J. Ma, K. Liu, J. Hazard. Mater. 162, 133 (2009)

    CAS  PubMed  Google Scholar 

  63. B. Li, B. Mu, Y. Yang, Bioresource Technol 277, 157 (2019)

    CAS  Google Scholar 

  64. B.S.R. Hall, F.H. Allen, I.D. Brown, Acta Cryst. A 47, 655 (1991)

    Google Scholar 

  65. P.P. Kubelka, J. Opt. Soc. Am. 38(5), 448 (1948)

    CAS  PubMed  Google Scholar 

  66. J. Zhang, X. Yan, X. Hu, R. Feng, M. Zhou, Chem. Eng. J. 347, 640 (2018)

    CAS  Google Scholar 

  67. I. Langmuir, J. Amer. Chem. Soc. 38, 1145 (1916)

    CAS  Google Scholar 

  68. I. Langmuir, J. Amer. Chem. Soc. 40, 1361 (1918)

    CAS  Google Scholar 

  69. H. Freundlich, Colloid and Capillary Chemistry (Methuen & Co., Ltd., London, 1926), pp. 110–114

    Google Scholar 

  70. M.I. Tempkin, V, Pyzhev. Acta Physicochimica 12, 327 (1940)

    Google Scholar 

  71. R. D. Sousa, A. R. Oliveira, J. F. Cruz Filho, T. C. M. Dantas,A. G. D. Santos, V. P. S. Caldeira, G. E. Luz Jr., Water Air Soil Poll. 229, 125 (2018)

  72. X. Peng, F. Hu, H. Dai, Q. Xiong, C. Xu, J. Taiwan Inst. Chem. E. 65, 472 (2016)

    CAS  Google Scholar 

  73. F. Hayeeye, M. Sattar, W. Chinpa, O. Sirichote, Colloid. Surfaces A 513, 259 (2017)

    CAS  Google Scholar 

  74. K. Shen, M.A. Gondal, J. Saudi Chem. Soc. 21, 120 (2017)

    Google Scholar 

  75. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskaps-Akademiens. Handlingar 24, 1–39 (1898)

    Google Scholar 

  76. Y.S. Ho, G.K. Mckay, Trans. IChemE 76B, 183 (1998)

    Google Scholar 

  77. A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, S. Afr, J. Chem. 68, 115 (2015)

    Google Scholar 

  78. M. Jin, Z. Guo, Z. Lv, J. Mater. Sci. 54, 6853 (2019)

    CAS  Google Scholar 

  79. I.M. El-Nahhal, J.K. Salem, M. Selmane, F.S. Rodeh, H.A. Ebtihan, Chem. Phys. Lett. 667, 165 (2017)

    CAS  Google Scholar 

  80. K. Bendahou, L. Cherif, S. Siffert, H.L. Tidahy, H. Benaissa, A. Aboukais, Appl. Catal. A-Gen. 351, 82 (2008)

    CAS  Google Scholar 

  81. P.M. Skarstad, S. Geller, Mater. Res. Bull. 10, 791 (1975)

    CAS  Google Scholar 

  82. J.Y. Yang, C.M. Zheng, Y.Q. Wang, M.L. Guo, Micropor. Mesopor. Mat. 204, 58 (2015)

    CAS  Google Scholar 

  83. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, M.-H. Whangbo, Inorg. Chem. 48, 10697 (2009)

    CAS  PubMed  Google Scholar 

  84. F.X. Nobre, I.S. Bastos, R.O.S. Fontenelle, E.A.A. Júnior, M.L. Takeno, L. Manzato, J.M.E. de Matos, P.P.O. Nogueira, J.F.S. Mendes, W.R. Brito, P.R.C. Couceiro, Ultrason. Sonochem. (2019). https://doi.org/10.1016/j.ultsonch.2019.104620

    Article  PubMed  Google Scholar 

  85. B. H. Toby (2006) Powder Diffr. 21, 67 (2006)

  86. C. C. de Foggi, R. C. de Oliveira, M. T. Fabbro, C. E. Vergani, J. Andrés, E. Longo, A. L. Machado, Cryst. Growth Des. 17, 6239 (2017)

    CAS  Google Scholar 

  87. X. Fan, J. Li, Z. Zhao, Y. Wei, J. Liu, A. Duan, G. Jiang, RSC Adv. 5, 28305 (2015)

    CAS  Google Scholar 

  88. S. Muthamizh, K. Giribabu, R. Suresh, R. Manigandan, S. Munusamy, S.P. Kumar, V. Narayanan, Int. J. Chemtech Res. 6, 3392 (2014)

    Google Scholar 

  89. E. Longo, D.P. Volanti, V.M. Longo, L. Gracia, I.C. Nogueira, M.A.P. Almeida, A.N. Pinheiro, M.M. Ferrer, L.S. Cavalcante, J. Andrés, J. Phys. Chem. A 118, 1229 (2014)

    CAS  Google Scholar 

  90. M.S. Asgari, A. Zonouzi, R. Rahimi, M. Rabbani, Orient. J. Chem. 31, 1537 (2015)

    CAS  Google Scholar 

  91. M. Selvamani, G. Krishnamoorthy, M. Ramadoss, P.K. Kumar, M. Settu, S. Ranganathan, N. Vengidusamy, Mater. Sci. Eng. C 60, 109 (2016)

    CAS  Google Scholar 

  92. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

    CAS  Google Scholar 

  93. Y. Chai, L. Wang, J. Ren, W.L. Dai, Appl. Surf. Sci. 324, 212 (2015)

    CAS  Google Scholar 

  94. D. Xu, B. Cheng, S. Cao, J. Yu, Appl. Catal. B: Environ. 164, 380 (2015)

    CAS  Google Scholar 

  95. X. Wang, C. Fu, P. Wang, H. Yu, J. Yu, Nanotechnology 24, 165602 (2013)

    PubMed  Google Scholar 

  96. A. Szewczyk, M. Prokopowicz, W. Sawicki, D. Majda, G. Walker, Micropor. Mesopor. Mat. 274, 113 (2019)

    CAS  Google Scholar 

  97. D. Xu, B. Cheng, J. Zhang, W. Wang, J. Yu, W. Ho, J. Mater. Chem. A 3, 20153 (2015)

    CAS  Google Scholar 

  98. Q. Fan, P. Li, D. Pan, Radionuclides sorption on typical clay minerals: Modeling and spectroscopies, ed by C. Chen (Elsevier, New York, 2019) pp. 1

  99. N.F. Andrade Neto, P.M. Oliveira, M.R.D. Bomio, F.V. Motta, Ceram. Int. 45, 152015 (2019)

    Google Scholar 

  100. M. Pirhashemi, A. Habibi-Yangjeh, J. Colloid Interf. Sci. 491, 216 (2017)

    CAS  Google Scholar 

  101. J.F. Cruz-Filho, T.M.S. Costa, M.S. Lima, L.J. Silva, R.S. Santos, L.S. Cavalcante, E. Longo, G.E. Luz Jr., J. Photochem. Photobiol. A Chem. 377, 14 (2019)

    CAS  Google Scholar 

  102. J. Wisniewska, K. Grzelak, S.P. Huang, I. Sobczak, C.M. Yang, M. Ziolek, Catal. Today (2019). https://doi.org/10.1016/j.cattod.2019.05.012

    Article  Google Scholar 

  103. T. Qiang, Y. Song, J. Zhao, J. Li, J. Alloy Compd. 770, 792 (2019)

    CAS  Google Scholar 

  104. H. Wen, X. Zhou, Z. Shen, Z. Peng, H. Chen, L. Hao, H. Zhou, Colloid Surface B 181, 285 (2019)

    CAS  Google Scholar 

  105. D.P. Woodruff, T.A. Delchar, Modern Techniques of Surface Science, 1st edn. (Elsevier, Cambridge, 1986), p. 683

    Google Scholar 

  106. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Rep-UK 4, 4596 (2014)

    Google Scholar 

  107. J.M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J.B. Rosenholm, M. Lindén, Langmuir 23, 4315 (2007)

    CAS  PubMed  Google Scholar 

  108. J.F. Duarte-Neto, J.M. Cartaxo, G.A. Neves, R.R. Menezes, Ver. Eletr. Mater. Proc. 9, 51 (2014)

    Google Scholar 

  109. R. F. do Nascimento, A. C. A de Lima, C. B. Vidal, D. Q. Melo, G. S. Raulino, Adsorção: aspectos teóricos e aplicações ambientais, (Imprensa Universitária, Fortaleza, (2014) pp. 256

  110. P. Wang, M. Cheng, Z. Zhang, J. Saudi Chem. Soc. 18, 308 (2014)

    Google Scholar 

  111. Z.L. Cheng, Y.X. Li, Z. Liu, J. Ind Eng Chem. 55, 234 (2017)

    CAS  Google Scholar 

  112. S.L. Hu, S.Y. Yong, C.L. Wong, J. Appl. Phycol. 21, 625 (2009)

    Google Scholar 

  113. H. Deng, Z. Mao, H. Xu, L. Zhang, Y. Zhong, X. Sui, Ecotox. Environ. Safe. 168, 35 (2019)

    CAS  Google Scholar 

  114. S. Yamaguchi, S. Minbuta, S.; K. Matsui, Colloid. Surf. A 555, 309 (2018)

  115. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Environ. Pollut. 252, 352 (2019)

    CAS  PubMed  Google Scholar 

  116. S. Wang, B. Yang, Y. Liu, J. Colloid Interf. Sci. 507, 225 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the following Grants – CNPq (455864/2014–4, 307559/2016–8, 305757/2018–0). The authors also wish to acknowledge financial support from the CAPES Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. M. Silva.

Ethics declarations

Conflict of interest

All authors declare that they have not conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 2009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, F.C.M., Silva, L.K.R., Santos, A.G.D. et al. Structural Refinement, Morphological Features, Optical Properties, and Adsorption Capacity of α-Ag2WO4 Nanocrystals/SBA-15 Mesoporous on Rhodamine B Dye. J Inorg Organomet Polym 30, 3626–3645 (2020). https://doi.org/10.1007/s10904-020-01560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01560-3

Keywords

Navigation