Skip to main content
Log in

Combined mutagenesis and metabolic regulation to enhance d-arabitol production from Candida parapsilosis

  • Biotechnology Methods - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

d-Arabitol is an important pentitol that is widely used in the food, pharmaceutical and chemical industries. It is mainly produced by yeasts during the biotransformation of glucose. To obtain strains with high d-arabitol production, Candida parapsilosis was mutated using atmospheric and room temperature plasma (ARTP). Among the screened mutants, mutant A6 had the highest yield at 32.92 g/L, a 53.98% increase compared with the original strain (21.38 g/L). Furthermore, metabolic regulators were added to the medium to improve d-arabitol production. Pyrithioxin dihydrochloride increased d-arabitol production by 34.4% by regulating glucose-6-phosphate dehydrogenase, and 4-methylpyrazole increased d-arabitol production by 77.4% compared with the control group by inhibiting alcohol dehydrogenase activity. Amphotericin B and Triton X-100 increased d-arabitol production by 23.8% and 42.2% by improving the membrane permeability and dissolved oxygen content, respectively. This study may provide important implications for obtaining high-yield d-arabitol strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Awad GEA, Helal MMI, Danial EN et al (2014) Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box-Behnken design. Saudi J Biol Sci 21(1):81–88

    CAS  PubMed  Google Scholar 

  2. Bielenberg GW, Hayn C, Krieglstein J (1986) Effects of cerebro-protective agents on enzyme activities of rat primary glial cultures and rat cerebral cortex. Biochem Pharmacol 35(16):2693–2702

    CAS  PubMed  Google Scholar 

  3. Cadieu N, Cadieu JC, Ghadraoui LE et al (1999) Conditioning to ethanol in the fruit fly—a study using an inhibitor of ADH. J Insect Physiol 45(6):579–586

    CAS  PubMed  Google Scholar 

  4. Cao S, Zhou X, Jin W et al (2017) Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresour Technol 244(2):1400–1406

    CAS  PubMed  Google Scholar 

  5. Cheng G, Xu J, Xia X et al (2016) Breeding l-arginine-producing strains by a novel mutagenesis method: atmospheric and room temperature plasma (ARTP). Prep Biochem Biotechnol 46(5):509–516

    CAS  PubMed  Google Scholar 

  6. Fang M, Jin L, Zhang C et al (2013) Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS ONE 8(10):1–12

    Google Scholar 

  7. Galindo E, Salcedo G (1996) Detergents improve xanthan yield and polymer quality in cultures of xanthomonas campestris. Enzyme Microbial Technol 19(2):145–149

    CAS  Google Scholar 

  8. Guo Q, Zabed H, Zhang H et al (2019) Optimization of fermentation medium for a newly isolated yeast strain (Zygosaccharomyces rouxii JM-C46) and evaluation of factors affecting biosynthesis of d-arabitol. LWT 99:319–327

    CAS  Google Scholar 

  9. Hua X, Wang J, Wu Z et al (2010) A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and salt-contaminated soil. Biochem Eng J 49(2):201–206

    CAS  Google Scholar 

  10. Kordowska-Wiater M (2015) Production of arabitol by yeasts: current status and future prospects. J Appl Microbiol 119(2):303–314

    CAS  PubMed  Google Scholar 

  11. Kruijff BD, Demel RA (1974) Polyene antibiotic-sterol interactions in membranes of acholeplasma laidlawii cells and lecithin liposomes III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta 339(1):57–70

    PubMed  Google Scholar 

  12. Kwon DH, Kim MD, Lee TH et al (2006) Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 43(1–4):86–89

    CAS  Google Scholar 

  13. Li X, Liu R, Li J et al (2015) Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments. Bioresour Technol 177:134–140

    CAS  PubMed  Google Scholar 

  14. Loman AA, Islam SMM, Ju LK (2018) Production of arabitol from enzymatic hydrolysate of soybean flour by Debaryomyces hansenii fermentation. Appl Microbiol Biotechnol 102(2):641–653

    CAS  PubMed  Google Scholar 

  15. Loman AA, Ju LK (2015) Inhibitory effects of arabitol on caries-associated microbiologic parameters of oral Streptococci and Lactobacilli. Arch Oral Biol 60(12):1721–1728

    PubMed  Google Scholar 

  16. Ma Y, Yang H, Chen X et al (2015) Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): alkaline α-amylase as a case study. Protein Expr Purif 114:82–88

    CAS  PubMed  Google Scholar 

  17. Maisch T, Shimizu T, Mitra A et al (2012) Contact-free cold atmospheric plasma treatment of Deinococcus radiodurans. J Ind Microbiol Biotechnol 39(9):1367–1375

    CAS  PubMed  Google Scholar 

  18. Mäkinen KK (2010) Sugar alcohols, caries incidence, and remineralization of caries lesions: a literature review. Int J Dent 2010(24):981072

    PubMed  PubMed Central  Google Scholar 

  19. Mandviwala TN, Khire JM (2000) Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. J Ind Microbiol Biotechnol 24(4):237–243

    CAS  Google Scholar 

  20. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596

    CAS  PubMed  Google Scholar 

  21. Qi X, Luo Y, Wang X et al (2015) Enhanced d-arabitol production by Zygosaccharomyces rouxii JM-C46: isolation of strains and process of repeated-batch fermentation. J Ind Microbiol Biotechnol 42(5):807–812

    CAS  PubMed  Google Scholar 

  22. Saha BC, Sakakibara Y, Cotta MA (2007) Production of d-arabitol by a newly isolated Zygosaccharomyces rouxii. J Ind Microbiol Biotechnol 34(7):519–523

    CAS  PubMed  Google Scholar 

  23. Tian WN, Braunstein LD, Pang J et al (1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 273(17):10609–10617

    CAS  PubMed  Google Scholar 

  24. Walker JRL (1992) Spectrophotometric determination of activity: alcohol aehydrogenase. Biochem Mol Biol Educ 20(1):42–43

    CAS  Google Scholar 

  25. Yang TS, Ou KL, Peng PW et al (1828) (2013) Quantifying membrane permeability of amphotericin B ion channels in single living cells. Biochim Biophys Acta 8:1794–1801

    Google Scholar 

  26. Yoshikawa J, Habe H, Morita T et al (2014) Production of d-arabitol from raw glycerol by Candida quercitrusa. Appl Microbiol Biotechnol 98(7):2947–2953

    CAS  PubMed  Google Scholar 

  27. Zhang X, Zhang XF, Li HP et al (2014) Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 98(12):5387–5396

    CAS  PubMed  Google Scholar 

  28. Zhang X, Zhang C, Zhou QQ et al (2015) Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl Microbiol Biotechnol 99(13):5639–5646

    CAS  PubMed  Google Scholar 

  29. Zhu HY, Xu H, Dai XY et al (2010) Production of d-arabitol by a newly isolated Kodamaea ohmeri. Bioprocess Biosyst Eng 33(5):565–571

    CAS  PubMed  Google Scholar 

  30. Zou RS, Li S, Zhang LL et al (2019) Mutagenesis of Rhodobacter sphaeroides using atmospheric and room temperature plasma treatment for efficient production of coenzyme Q10. J Biosci Bioeng 127(6):698–702

    CAS  PubMed  Google Scholar 

  31. Zouari N, Jaoua S (1999) The effect of complex carbon and nitrogen, salt, Tween-80 and acetate on delta-endotoxin production by a Bacillus thuringiensis subsp kurstaki. J Ind Microbiol Biotechnol 23(6):497–502

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31871745), National Key Research and Development Program (2017YFC1600902) and National First-Class Discipline program of Food Science and Technology (JUFSTR 20180203).

Author information

Authors and Affiliations

Authors

Contributions

BJ and TZ helped conceive the study and BJ was in charge of overall direction and planning. SZ designed and carried out the experiments, and analyzed the data. JC contributed to the interpretation of the results. SZ wrote the manuscript with support from BJ and JC. All authors provided critical feedback and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Bo Jiang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Jiang, B., Zhang, T. et al. Combined mutagenesis and metabolic regulation to enhance d-arabitol production from Candida parapsilosis. J Ind Microbiol Biotechnol 47, 425–435 (2020). https://doi.org/10.1007/s10295-020-02278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02278-4

Keywords

Navigation