Skip to main content
Log in

Physical vapor deposition of TiO2 nanoparticles on artificial graphite: an excellent anode for high rate and long cycle life lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Artificial graphite powder (AGP) is one of the utmost common anode materials for lithium-ion batteries (LIB). Nevertheless, the dissolution of the anode material into the electrolyte is one of the main challenges that causes the vanishing capacity and poor cyclability. In this study, a nanoscale TiO2 film is uniformly sputtered on the surface of bare artificial graphite (BAG) electrode through the physical vapor deposition (PVD). The results obviously prove that TiO2 film is completely and homogeneously covered on the BAG electrodes. BAG and AG/TiO2 electrodes represent discharge capacities of 339.3 and 369 mAh g−1 at first cycle, respectively. Therefore, the nano-layer coating of TiO2 increases the initial discharge capacity of artificial graphite around 9%. After 100 cycles, the values of capacity retention at a current density of 0.5 C are 88.7 and 94.2% for BAG and AG/TiO2, respectively. The discharge specific capacity of pouch full cells using BAG and AG/TiO2 anodes versus NCA cathode reveals that AG/TiO2 anodes could still provide a high reversible capacity of around 123.05 mAh g−1 after 10 cycles at a high current density of 4 C. This corresponds to 346.5% improvement compared with BAG anodes versus NCA cathode at 4 C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dirican M, Yanilmaz M, Fu K, Yildiz O, Kizil H, Hu Y, Zhang X (2014) Carbon-confined PVA-derived silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries. J Electrochem Soc 161(14):A2197–A2203

    Article  CAS  Google Scholar 

  2. Zarei-Jelyani M, Sarshar M, Babaiee M, Tashakor N (2018) Development of lifetime prediction model of lithium-ion battery based on minimizing prediction errors of cycling and operational time degradation using genetic algorithm. Journal of Renewable Energy and Environment 5(3):60–63

    Google Scholar 

  3. Xia M, Zhou Z, Su Y, Li Y, Wu Y, Zhou N, Zhang H, Xiong X (2019) Scalable synthesis SiO@ C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery. Appl Surf Sci 467:298–308

    Article  Google Scholar 

  4. Jelyani MZ, Rashid-Nadimi S, Asghari S (2017) Treated carbon felt as electrode material in vanadium redox flow batteries: a study of the use of carbon nanotubes as electrocatalyst. J Solid State Electrochem 21(1):69–79

    Article  CAS  Google Scholar 

  5. Zhang P, Ru Q, Gao Y, Yan H, Hou X, Chen F, Hu S, Zhao L (2019) Porous nano-silicon/TiO 2/rGO@ carbon architecture with 1000-cycling lifespan as superior durable anodes for lithium-ion batteries. Ionics 25(10):4675–4684

    Article  CAS  Google Scholar 

  6. Moghim MH, Eqra R, Babaiee M, Zarei-Jelyani M, Loghavi MM (2017) Role of reduced graphene oxide as nano-electrocatalyst in carbon felt electrode of vanadium redox flow battery. J Electroanal Chem 789:67–75

    Article  CAS  Google Scholar 

  7. Zarei-Jelyani M, Babaiee M, Ghasemi A, Eqra R (2016) Investigation of hydroxylated carbon felt electrode in vanadium redox flow battery by using optimized supporting electrolyte. Journal of Renewable Energy and Environment 3(4):54–59

    Google Scholar 

  8. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  CAS  Google Scholar 

  9. Ye M, Gao J, Xiao Y, Xu T, Zhao Y, Qu L (2017) Metal/graphene oxide batteries. Carbon 125:299–307

    Article  CAS  Google Scholar 

  10. Loghavi MM, Mohammadi-Manesh H, Eqra R (2019) Y2O3-decorated LiNi0. 8Co0. 15Al0. 05O2 cathode material with improved electrochemical performance for lithium-ion batteries. J Electroanal Chem 848:113326

    Article  CAS  Google Scholar 

  11. Li Y, Yang J, Song J (2017) Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle. Renew Sust Energ Rev 69:652–663

    Article  Google Scholar 

  12. Zarei-Jelyani M, Baktashian S, Babaiee M, Eqra R (2018) Improved mechanical and electrochemical properties of artificial graphite anode using water-based binders in lithium-ion batteries. Journal of Renewable Energy and Environment 5(4):34–39

    Google Scholar 

  13. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38(2):183–197

    Article  CAS  Google Scholar 

  14. He B-L, Dong B, Li H-L (2007) Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery. Electrochem Commun 9(3):425–430

    Article  CAS  Google Scholar 

  15. Zheng M, Wang Y, Reeve J, Souzandeh H, Zhong W-H (2018) A polymer-alloy binder for structures-properties control of battery electrodes. Energy Storage Mater 14:149–158

  16. Cao Y, Li J, Shao C, Li B, Li Y, Yang Y (2018) Fabrication of hollow carbonaceous nanospheres and their applications in lithium-ion batteries. Mater Res Bull 102:51–55

    Article  CAS  Google Scholar 

  17. Xu Q-T, Li J-C, Xue H-G, Guo S-P (2018) Binary iron sulfides as anode materials for rechargeable batteries: crystal structures, syntheses, and electrochemical performance. J Power Sources 379:41–52

    Article  CAS  Google Scholar 

  18. Gao L, Wang L, Dai S, Cao M, Zhong Z, Shen Y, Wang M (2017) Li4Ti5O12-TiO2 nanowire arrays constructed with stacked nanocrystals for high-rate lithium and sodium ion batteries. J Power Sources 344:223–232

    Article  CAS  Google Scholar 

  19. Zhen M, Zhu X, Zhang X, Zhou Z, Liu L (2015) Reduced graphene oxide-supported TiO2 fiber bundles with mesostructures as anode materials for lithium-ion batteries. Chem Eur J 21(41):14454–14459

    Article  CAS  PubMed  Google Scholar 

  20. Zhuang W, Lu L, Wu X, Jin W, Meng M, Zhu Y, Lu X (2013) TiO2-B nanofibers with high thermal stability as improved anodes for lithium ion batteries. Electrochem Commun 27:124–127

    Article  CAS  Google Scholar 

  21. Zhu G-N, Wang Y-G, Xia Y-Y (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5(5):6652–6667

    Article  CAS  Google Scholar 

  22. Zheng C, He C, Zhang H, Wang W, Lei X (2015) TiO 2-reduced graphene oxide nanocomposite for high-rate application of lithium ion batteries. Ionics 21(1):51–58

    Article  CAS  Google Scholar 

  23. Huang L, Ding Y-H, Zhang P, Zhang H-L, Zhou R-H (2015) Carbon innercoated ordered porous TiO 2 as anode materials for lithium-ion batteries. Ionics 21(6):1553–1559

    Article  CAS  Google Scholar 

  24. Tao H-C, Fan L-Z, Yan X, Qu X (2012) In situ synthesis of TiO2–graphene nanosheets composites as anode materials for high-power lithium ion batteries. Electrochim Acta 69:328–333

    Article  CAS  Google Scholar 

  25. Lo W-C, Su S-H, Chu H-J, He J-L (2018) TiO2-CNTs grown on titanium as an anode layer for lithium-ion batteries. Surf Coat Technol 337:544–551

    Article  CAS  Google Scholar 

  26. Xia H, Tang S, Lu L, Meng Y, Ceder G (2007) The influence of preparation conditions on electrochemical properties of LiNi0. 5Mn1. 5O4 thin film electrodes by PLD. Electrochim Acta 52(8):2822–2828

    Article  CAS  Google Scholar 

  27. Baggetto L, Unocic RR, Dudney NJ, Veith GM (2012) Fabrication and characterization of Li–Mn–Ni–O sputtered thin film high voltage cathodes for Li-ion batteries. J Power Sources 211:108–118

    Article  CAS  Google Scholar 

  28. Sun P, Ma Y, Zhai T, Li H (2016) High performance LiNi0. 5Mn1. 5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method. Electrochim Acta 191:237–246

    Article  CAS  Google Scholar 

  29. Lai Y-Q, Xu M, Zhang Z-A, Gao C-H, Wang P, Yu Z-Y (2016) Optimized structure stability and electrochemical performance of LiNi0. 8Co0. 15Al0. 05O2 by sputtering nanoscale ZnO film. J Power Sources 309:20–26

    Article  CAS  Google Scholar 

  30. Steinhauer M, Risse S, Wagner N, Friedrich KA (2017) Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy. Electrochim Acta 228:652–658

    Article  CAS  Google Scholar 

  31. Loghavi MM, Mohammadi-Manesh H, Eqra R (2019) LiNi 0.8 Co 0.15 Al 0.05 O 2 coated by chromium oxide as a cathode material for lithium-ion batteries. J Solid State Electrochem 23(8):2569–2578

    Article  CAS  Google Scholar 

  32. Lai W (2007) Impedance spectroscopy as a tool for the electrochemical study of mixed conducting ceria. California Institute of Technology

  33. Zhou N, Wu Y, Li Y, Yang J, Zhou Q, Guo Y, Xia M, Zhou ZJASS (2020) Interconnected structure Si@ TiO2-B/CNTs composite anode applied for high-energy lithium-ion batteries. 500:144026

  34. Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607

    Article  Google Scholar 

  35. Zarei-Jelyani M, Babaiee M, Baktashian S, Eqra R (2019) Unraveling the role of binder concentration on the electrochemical behavior of mesocarbon microbead anode in lithium–ion batteries: understanding the formation of the solid electrolyte interphase. J Solid State Electrochem 23(10):2771–2783

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial support from Institute of Mechanics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehrdad Gholami or Mohammad Zarei-jelyani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, M., Zarei-jelyani, M., Babaiee, M. et al. Physical vapor deposition of TiO2 nanoparticles on artificial graphite: an excellent anode for high rate and long cycle life lithium-ion batteries. Ionics 26, 4391–4399 (2020). https://doi.org/10.1007/s11581-020-03579-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03579-5

Keywords

Navigation