Skip to main content
Log in

Tuning the surface properties of Fe3O4 by zwitterionic sulfobetaine: application to antifouling and dye removal membrane

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, zwitterionic polysulfobetaine@Fe3O4 (PSBMA@Fe3O4) nanoparticles were synthesized via covalent grafting and free radical polymerization and characterized. The PSBMA@Fe3O4 noparticles had a zeta potential of − 36 mV (pH 6.3), which guaranteed the high colloidal stability. The as-synthesized nanoparticles were employed as a nanofiller to prepare superior antifouling polysulfone hybrid hollow fiber membranes. The FM-2 membrane exhibited the maximum pure water permeability of 61.1 L/m2 h bar with humic acid (HA) removal efficiency of 98%. The fouling resistance was evaluated using HA as a foulant, and the results suggested that the FM-2 membrane had less amount of HA adsorption with flux recovery ratio of 88.4%. Furthermore, the FM-2 membrane was demonstrated the reactive black-5 and reactive orange-16 removal of above 99% and 84% without much reduction in the dye solution permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babu K, Dhamodharan R (2009) Synthesis of polymer grafted magnetite nanoparticle with the highest grafting density via controlled radical polymerization. Nanoscale Res Lett 4:1090

    CAS  Google Scholar 

  • Bengani-Lutz P, Converse E, Cebe P, Asatekin A (2017) Self-assembling zwitterionic copolymers as membrane selective layers with excellent fouling resistance: effect of zwitterion chemistry. ACS Appl Mater Interfaces 9:20859–20872

    CAS  Google Scholar 

  • Chiag Y-C, Chang Y, Chen W-Y, Ruaan R-c (2011) Biofouling resistance of ultrafiltration membranes controlled by surface self-assembled coating with PEGylated copolymers. Langmuir 28:1399–1407

    Google Scholar 

  • Daraei P, Madaeni SS, Ghaemi N, Salehi E, Khadivi MA, Moradian R, Astinchap B (2012) Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water. J Membr Sci 415:250–259

    Google Scholar 

  • Galvin CJ, Dimitriou MD, Satija SK, Genzer J (2014) Swelling of polyelectrolyte and polyzwitterion brushes by humid vapors. J Am Chem Soc 136:12737–12745

    CAS  Google Scholar 

  • Hanaor D, Michelazzi M, Leonelli C, Sorrell CC (2012) The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc 32:235–244

    CAS  Google Scholar 

  • Hebbar RS, Isloor AM, Ananda K, Abdullah MS, Ismail A (2017) Fabrication of a novel hollow fiber membrane decorated with functionalized Fe2O3 nanoparticles: towards sustainable water treatment and biofouling control. New J Chem 41:4197–4211

    CAS  Google Scholar 

  • Hebbar RS, Isloor AM, Ananda K, Ismail A (2016) Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal. J Mater Chem A 4:764–774

    CAS  Google Scholar 

  • Hebbar RS, Isloor AM, Ismail A, Shilton SJ, Obaid A, Fun H-K (2015) Probing the morphology and anti-organic fouling behaviour of a polyetherimide membrane modified with hydrophilic organic acids as additives. New J Chem 39:6141–6150

    CAS  Google Scholar 

  • Hong S, Elimelech M (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J Membr Sci 132:159–181

    CAS  Google Scholar 

  • Hwang L-L, Tseng H-H, Chen J-C (2011) Fabrication of polyphenylsulfone/polyetherimide blend membranes for ultrafiltration applications: the effects of blending ratio on membrane properties and humic acid removal performance. J Membr Sci 384:72–81

    CAS  Google Scholar 

  • Ibrahim GPS, Isloor AM, Inamuddin, Asiri AM, Ismail N, Ismail AF, Ashraf GM (2017a) Novel, one-step synthesis of zwitterionic polymer nanoparticles via distillation-precipitation polymerization and its application for dye removal membrane. Sci Rep 7:15889. https://doi.org/10.1038/s41598-017-16131-9

    Article  CAS  Google Scholar 

  • Ibrahim GPS, Isloor AM, Moslehyani A, Ismail AF (2017b) Bio-inspired, fouling resistant, tannic acid functionalized halloysite nanotube reinforced polysulfone loose nanofiltration hollow fiber membranes for efficient dye and salt separation. J Water Process Eng 20:138–148. https://doi.org/10.1016/j.jwpe.2017.09.015

    Article  Google Scholar 

  • Ibrahim GS, Isloor AM, Inamuddin, Asiri AM, Ismail A, Kumar R, Ahamed MI (2018) Performance intensification of the polysulfone ultrafiltration membrane by blending with copolymer encompassing novel derivative of poly(styrene-co-maleic anhydride) for heavy metal removal from wastewater. Chem Eng J 353:425–435

    CAS  Google Scholar 

  • Ibrahim GPS, Isloor AM, Yuliwati E, Ismail AF (2019) Chapter 2, carbon-based nanocomposite membranes for water and wastewater purification. In: Lau W-J, Ismail AF, Isloor A, Al-Ahmed A (eds) Advanced nanomaterials for membrane synthesis and its applications. Elsevier, Amsterdam, pp 23–44. https://doi.org/10.1016/B978-0-12-814503-6.00002-1

    Chapter  Google Scholar 

  • Jain P et al (2017) Poly(ectoine) hydrogels resist nonspecific protein adsorption. Langmuir 33:11264–11269. https://doi.org/10.1021/acs.langmuir.7b02434

    Article  CAS  Google Scholar 

  • Jian P, Yahui H, Yang W, Linlin L (2006) Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J Membr Sci 284:9–16

    CAS  Google Scholar 

  • Jiang J-H, Zhu L-P, Zhang H-T, Zhu B-K, Xu Y-Y (2014) Improved hydrodynamic permeability and antifouling properties of poly (vinylidene fluoride) membranes using polydopamine nanoparticles as additives. J Membr Sci 457:73–81

    CAS  Google Scholar 

  • Jiang M, Ye K, Deng J, Lin J, Ye W, Zhao S, Van der Bruggen B (2018) Conventional ultrafiltration as effective strategy for dye/salt fractionation in textile wastewater treatment. Environ Sci Technol 52:10698–10708

    CAS  Google Scholar 

  • Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932

    CAS  Google Scholar 

  • Kaiya Y, Itoh Y, Fujita K, Takizawa S (1996) Study on fouling materials in the membrane treatment process for potable water. Desalination 106:71–77. https://doi.org/10.1016/S0011-9164(96)00094-X

    Article  CAS  Google Scholar 

  • Keating JJ IV, Imbrogno J, Belfort G (2016) Polymer brushes for membrane separations: a review. ACS Appl Mater Interfaces 8:28383–28399

    CAS  Google Scholar 

  • Kitano H, Imai M, Sudo K, Ide M (2002) Hydrogen-bonded network structure of water in aqueous solution of sulfobetaine polymers. J Phys Chem B 106:11391–11396

    CAS  Google Scholar 

  • Kolangare IM, Isloor AM, Karim ZA, Kulal A, Ismail AF, Asiri AM (2018) Antibiofouling hollow-fiber membranes for dye rejection by embedding chitosan and silver-loaded chitosan nanoparticles. Environ Chem Lett 17:581–587

    Google Scholar 

  • Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18:3405–3413

    CAS  Google Scholar 

  • Kumar M, Gholamvand Z, Morrissey A, Nolan K, Ulbricht M, Lawler J (2016) Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO−TiO2 nanocomposite and polysulfone for humic acid removal. J Membr Sci 506:38–49

    CAS  Google Scholar 

  • Kumar M, Ulbricht M (2013) Novel antifouling positively charged hybrid ultrafiltration membranes for protein separation based on blends of carboxylated carbon nanotubes and aminated poly(arylene ether sulfone). J Membr Sci 448:62–73

    CAS  Google Scholar 

  • Laine J-M, Hagstrom JP, Clark MM, Mallevialle J (1989) Effects of ultrafiltration membrane composition. J Am Water Works Assoc 81:61–67

    CAS  Google Scholar 

  • Leng C et al (2018) Effect of surface hydration on antifouling properties of mixed charged polymers. Langmuir 34:6538–6545

    CAS  Google Scholar 

  • Lin J et al (2017) In situ encapsulated Fe3O4 nanosheet arrays with graphene layers as an anode for high-performance asymmetric supercapacitors. J Mater Chem A 5:24594–24601

    CAS  Google Scholar 

  • Lin J et al (2016) Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. J Membr Sci 514:217–228

    CAS  Google Scholar 

  • Lin J et al (2015) Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J Membr Sci 477:183–193

    CAS  Google Scholar 

  • Liu C, Mao H, Zheng J, Zhang S (2017) Tight ultrafiltration membrane: Preparation and characterization of thermally resistant carboxylated cardo poly (arylene ether ketone) s (PAEK-COOH) tight ultrafiltration membrane for dye removal. J Membr Sci 530:1–10

    CAS  Google Scholar 

  • Liu J (2016) Interfacing zwitterionic liposomes with inorganic nanomaterials: surface forces, membrane integrity, and applications. Langmuir 32:4393–4404

    CAS  Google Scholar 

  • Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4190

    CAS  Google Scholar 

  • Mi L, Jiang S (2014) Integrated antimicrobial and nonfouling zwitterionic polymers. Angew Chem Int Ed 53:1746–1754

    CAS  Google Scholar 

  • Mondini S et al (2015) Zwitterion-coated iron oxide nanoparticles: surface chemistry and intracellular uptake by hepatocarcinoma (HepG2) cells. Langmuir 31:7381–7390. https://doi.org/10.1021/acs.langmuir.5b01496

    Article  CAS  Google Scholar 

  • Mukherjee M, De S (2015) Reduction of microbial contamination from drinking water using an iron oxide nanoparticle-impregnated ultrafiltration mixed matrix membrane: preparation, characterization and antimicrobial properties. Environ Sci Water Res Technol 1:204–217

    CAS  Google Scholar 

  • Mukherjee M, Panda SR, De S (2017) Adhesion resistant chitosan coated iron oxide polyacrylonitrile mixed matrix membrane for disinfection of surface water. J Chem Technol Biotechnol 92:408–419

    CAS  Google Scholar 

  • Nas MS, Calimli MH, Burhan H, Yılmaz M, Mustafov SD, Sen F (2019a) Synthesis, characterization, kinetics and adsorption properties of Pt-Co@GO nano-adsorbent for methylene blue removal in the aquatic mediums using ultrasonic process systems. J Mol Liq 296:112100. https://doi.org/10.1016/j.molliq.2019.112100

    Article  CAS  Google Scholar 

  • Nas MS, Kuyuldar E, Demirkan B, Calimli MH, Demirbaş O, Sen F (2019b) Magnetic nanocomposites decorated on multiwalled carbon nanotube for removal of Maxilon Blue 5G using the sono-Fenton method. Sci Rep 9:10850. https://doi.org/10.1038/s41598-019-47393-0

    Article  CAS  Google Scholar 

  • Nayak MC, Isloor AM, Moslehyani A, Ismail N, Ismail A (2018) Fabrication of novel PPSU/ZSM-5 ultrafiltration hollow fiber membranes for separation of proteins and hazardous reactive dyes. J Taiwan Inst Chem Eng 82:342–350

    CAS  Google Scholar 

  • Panda SR, Mukherjee M, De S (2015) Preparation, characterization and humic acid removal capacity of chitosan coated iron-oxide-polyacrylonitrile mixed matrix membrane. J Water Process Eng 6:93–104

    Google Scholar 

  • Peters CJ, Young RJ, Perry R (1980) Factors influencing the formation of haloforms in the chlorination of humic materials. Environ Sci Technol 14:1391–1395

    CAS  Google Scholar 

  • Purkait M, DasGupta S, De S (2004) Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Sep Purif Technol 37:81–92

    CAS  Google Scholar 

  • Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471. https://doi.org/10.1021/cr800208y

    Article  CAS  Google Scholar 

  • Rechendorff K, Hovgaard MB, Foss M, Zhdanov V, Besenbacher F (2006) Enhancement of protein adsorption induced by surface roughness. Langmuir 22:10885–10888

    CAS  Google Scholar 

  • Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636

    CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    CAS  Google Scholar 

  • Shenvi SS, Isloor AM, Ismail AF, Shilton SJ, Al Ahmed A (2015) Humic acid based biopolymeric membrane for effective removal of methylene blue and rhodamine B. Ind Eng Chem Res 54:4965–4975

    CAS  Google Scholar 

  • Silverstein RM, Webster FX, Kiemle DJ, Bryce DL (2014) Spectrometric identification of organic compounds. Wiley, Hoboken

    Google Scholar 

  • Song H, Shao J, He Y, Hou J, Chao W (2011) Natural organic matter removal and flux decline with charged ultrafiltration and nanofiltration membranes. J Membr Sci 376:179–187

    CAS  Google Scholar 

  • Stanicki D et al (2014) Carboxy-silane coated iron oxide nanoparticles: a convenient platform for cellular and small animal imaging. J Mater Chem B 2:387–397

    CAS  Google Scholar 

  • Suart B (2004) Infrared spectroscopy: fundamental and applications. Wiley, Hoboken

    Google Scholar 

  • Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res B 80:333–341

    Google Scholar 

  • Sunkara V, Cho Y-K (2013) Aminosilane layers on the plasma activated thermoplastics: influence of solvent on its structure and morphology. J Colloid Interf Sci 411:122–128

    CAS  Google Scholar 

  • Susanto H, Ulbricht M (2007) Photografted thin polymer hydrogel layers on PES ultrafiltration membranes: characterization, stability, and influence on separation performance. Langmuir 23:7818–7830

    CAS  Google Scholar 

  • Syed Ibrahim GP, Isloor AM, Bavarian M, Nejati S (2020) Integration of zwitterionic polymer nanoparticles in interfacial polymerization for ion separation. ACS Appl Polym Mater 2:1508–1517. https://doi.org/10.1021/acsapm.9b01192

    Article  CAS  Google Scholar 

  • Tang S-H et al (2018) Bio-inert control of zwitterionic poly(ethylene terephtalate) fibrous membranes. Langmuir 35:1727–1739

    Google Scholar 

  • Venault A et al (2016) Zwitterionic modifications for enhancing the antifouling properties of poly (vinylidene fluoride) membranes. Langmuir 32:4113–4124

    CAS  Google Scholar 

  • Wang J, Zhang Y, Zhu J, Hou J, Liu J, Van der Bruggen B (2016) Zwitterionic functionalized layered double hydroxides nanosheets for a novel charged mosaic membrane with high salt permeability. J Membr Sci 510:27–37

    CAS  Google Scholar 

  • Wang W et al (2016b) Zwitterionic-polymer-functionalized poly (vinyl alcohol-co-ethylene) nanofiber membrane for resistance to the adsorption of bacteria and protein. J Appl Polym Sci 44:133

    Google Scholar 

  • Weber EJ, Adams RL (1995) Chemical-and sediment-mediated reduction of the azo dye disperse blue 79. Environ Sci Technol 29:1163–1170

    CAS  Google Scholar 

  • Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1:16018

    CAS  Google Scholar 

  • Xiao W et al (2012) Prolonged in vivo circulation time by zwitterionic modification of magnetite nanoparticles for blood pool contrast agents. Contrast Media Mol I 7:320–327

    CAS  Google Scholar 

  • Yang R, Xu J, Ozaydin-Ince G, Wong SY, Gleason KK (2011) Surface-tethered zwitterionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition. Chem Mater 23:1263–1272

    CAS  Google Scholar 

  • Zhang L, Xue H, Gao C, Carr L, Wang J, Chu B, Jiang S (2010) Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. Biomaterials 31:6582–6588. https://doi.org/10.1016/j.biomaterials.2010.05.018

    Article  CAS  Google Scholar 

  • Zhang X, Wang J, He X, Chen L, Zhang Y (2015) Tailor-made boronic acid functionalized magnetic nanoparticles with a tunable polymer shell-assisted for the selective enrichment of glycoproteins/glycopeptides. ACS Appl Mater Interfaces 7:24576–24584

    CAS  Google Scholar 

  • Zhao X, Su Y, Dai H, Li Y, Zhang R, Jiang Z (2015) Coordination-enabled synergistic surface segregation for fabrication of multi-defense mechanism membranes. J Mater Chem A 3:3325–3331

    CAS  Google Scholar 

  • Zhao Y-H, Wee K-H, Bai R (2010) Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J Membr Sci 362:326–333. https://doi.org/10.1016/j.memsci.2010.06.037

    Article  CAS  Google Scholar 

  • Zhu J et al (2016) Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J Mater Chem A 4:1980–1990

    CAS  Google Scholar 

  • Zhu Y, Xie W, Zhang F, Xing T, Jin J (2017) Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation. ACS Appl Mater Interfaces 9:9603–9613

    CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (DF-219-130-1441). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Contributions

GPSI and AMI thank Prof. K. Uma Maheshwar Rao, Director of NITK, Surathkal, India, for the support and encouragement.

Corresponding author

Correspondence to Inamuddin.

Additional information

Editorial responsibility: Fatih ŞEN.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, G.P.S., Isloor, A.M., Inamuddin et al. Tuning the surface properties of Fe3O4 by zwitterionic sulfobetaine: application to antifouling and dye removal membrane. Int. J. Environ. Sci. Technol. 17, 4047–4060 (2020). https://doi.org/10.1007/s13762-020-02730-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02730-z

Keywords

Navigation