Skip to main content

Advertisement

Log in

Exogenous salicylic acid alleviates halosulfuron-methyl toxicity by coordinating the antioxidant system and improving photosynthesis in soybean (Glycine max Merr.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Halosulfuron-methyl (HSM) is an herbicide widely used in agricultural production, but it could affect the growth of non-target plants, induce plants produce excessive reactive oxygen species, disturb photosynthesis, and cause severe abiotic stress. In this study, the response of soybean seedlings to HSM stress and the mitigation effect of exogenous salicylic acid (SA) on HSM toxicity were studied. In comparison to HSM alone, SA (0.1 mM) pretreatment in combination with HSM (0.005, 0.05, 0.5 mg/L) promoted seed germination, root and shoot growth, and significantly improved the dry weight of root and shoot. The combination treatment also led to significant improvement in chlorophyll fluorescence parameters, gas exchange parameters and photosynthetic pigments content compared with HSM alone. Malondialdehyde, superoxide radical (O2·) and H2O2 contents under HSM treatment were significantly reduced by SA pretreatment. In addition, the activities of the superoxide dismutase, peroxidase and catalase were down-regulated by SA pretreatment under HSM treatment, but the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) were up-regulated. These results showed that SA could positively mitigate HSM toxicity by increasing APX and GR activities and protecting the photosynthetic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SA:

Salicylic acid

HSM:

Halosulfuron-methyl

ROS:

Reactive oxygen species

PSII:

Photosystem II

ФPSII:

Effective quantum yield of PSII photochemistry

P N :

Net photosynthetic rate

Gs:

Stomatal conductance

C i :

Intercellular CO2 concentration

Ls:

Stomatal limitation

NPQ:

Nonphotochemical quenching

qP:

Photochemical quenching coefficient

Fv/Fm :

Maximal quantum yield of PSII photochemistry

O2· :

Superoxide radical

SOD:

Superoxide dismutase

CAT:

Catalase

POD:

Peroxidase

MDA:

Malondialdehyde

APX:

Ascorbate peroxidase

GR:

Glutathione reductase

References

  • Abeles FB, Biles CL (1991) Characterization of peroxidase in lignifying peach fruit endocarp. Plant Physiol 95:269–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aebi H (1983) Catalase. In: Bergmeyer H (ed) Methods of enzymatic analysis. Weinheim-Verlag Chemie, Weinheim, pp 273–286

    Google Scholar 

  • Behera RK, Mishra PC, Choudhury NK (2002) High irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves. J Plant Physiol 159:967–973

    CAS  Google Scholar 

  • Berkowitz O, De Clercq I, Van Breusegem F, Whelan J (2016) Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. Plant Cell Environ 39:1127–1139

    CAS  PubMed  Google Scholar 

  • Beyer EM, Duffy MJ, Hay JV, Schlueter DD (1988) Sulfonylurea herbicides. In: Kearney PC, Kaufmann DD (eds) Herbicides chemistry, degradation and mode of action. Marcel Dekker, New York, pp 117–189

    Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    CAS  PubMed  Google Scholar 

  • Brown HM (1990) Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic Sci 29:263–281

    CAS  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, Zhang R, Wu GL et al (2010) Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.). Arch Environ Contam Toxicol 59:100–108

    CAS  PubMed  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247

    CAS  PubMed  Google Scholar 

  • Delavari PM, Baghizadeh A, Enteshari SH, Kalantari KM, Yazdanpanah A, Mousavi EA (2010) The effects of salicylic acid on some of biochemical and morphological characteristic of Ocimum basilicucm under salinity stress. Aust J Basic Appl Sci 4(10):4832–4845

    CAS  Google Scholar 

  • Ding GT, Jin ZJ, Han YH, Sun P, Li GY, Li WH (2019) Mitigation of chromium toxicity in Arabidopsis thaliana by sulfur supplementation. Ecotox Environ Safe 182:109–379

    Google Scholar 

  • Dubelman AM, Solsten TR, Fujiwaraet HJ et al (1997) Metabolism of halosulfuron-methyl by corn and wheat. J Agric Food Chem 45(6):2314–3232

    CAS  Google Scholar 

  • Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274

    Google Scholar 

  • Faraz A, Faizan M, Sami F et al (2019) Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. J Plant Growth Regul. https://doi.org/10.1007/s00344-019-10007-0

    Article  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    CAS  PubMed  Google Scholar 

  • Ge W, Jiao Y, Zou J, Jiang W, Liu D (2015) Ultrastructural and photosynthetic response of Populus 107 leaves to cadmium stress. Pol J Environ Stud 24:519

    CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Google Scholar 

  • Hayat S, Ahmad A (eds) (2007) Salicylic acid: a plant hormone. Springer, Dordrecht

    Google Scholar 

  • Huang H, Xiong ZT (2009) Toxic effects of cadmium, acetochlor and bensulfuron-methyl on nitrogen metabolism and plant growth in rice seedlings. Pestic Biochem Physiol 94:64–67

    CAS  Google Scholar 

  • Hu QJ, Fu YY, Guan YJ, Lin C, Cao DD, Hu WM, Sheteiwy M, Hu J (2016) Inhibitory effect of chemical combinations on seed germination and pre-harvest sprouting in hybrid rice. Plant Growth Regul 80:281

    CAS  Google Scholar 

  • Ignatenko A, Talanova V, Repkina N, Titov A (2019) Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation. Acta Physiol Plant 41:80

    Google Scholar 

  • Kaya A, Yigit E (2014) The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone. Ecotox Environ Saf 106:232–238

    CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    CAS  PubMed  Google Scholar 

  • Li Q, Yu B, Gao Y, Dai AH, Bai JG (2011) Cinnamic acid pretreatment mitigates chilling stress of cucumber leaves through altering antioxidant enzyme activity. J Plant Physiol 168:927–934

    CAS  PubMed  Google Scholar 

  • Liang L, Lu YL, Yang H (2012) Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Environ Sci Pollut R 19:2044–2054

    CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Lu YC, Zhang S, Miao SS, Jiang C, Huang MT, Liu Y, Yang H (2014) Enhanced degradation of herbicide isoproturon in wheat rhizosphere by salicylic acid. J Agric Food Chem 63:92–103

    Google Scholar 

  • Lu YC, Zhang S, Miao SS, Jiang C, Huang MT, Liu Y, Yang H (2015) Enhanced degradation of herbicide isoproturon in wheat rhizosphere by salicylic acid. J Agric Food Chem 63(1):92–103

    CAS  PubMed  Google Scholar 

  • Madhava Rao KV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    CAS  PubMed  Google Scholar 

  • Malamy J, Carr JP, Klessig DF (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    CAS  PubMed  Google Scholar 

  • Mishra V, Srivastava G, Prasad SM, Abraham G (2008) Growth, photosynthetic pigments and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. Pestic Biochem Physiol 92:30–37

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Okuda T, Matsuda Y, Yamanaka A et al (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97(3):1265–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan DJ, Li QL, Lin Z et al (2017) Interactions between salicylic acid and antioxidant enzymes tilting the balance of H2O2 from photorespiration in nontarget-crops under halosulfuron-methyl stress. Pestic Biochem Phys 143:214–223

    CAS  Google Scholar 

  • Parashar A, Yusuf M, Fariduddin Q, Ahmad A (2014) Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol 70:551–558

    CAS  PubMed  Google Scholar 

  • Pheomphun P, Treesubsuntorn C, Thiravetyan P (2019) Effect of exogenous catechin on alleviating O 3 stress: the role of catechinquinone in lipid peroxidation, salicylic acid, chlorophyll content, and antioxidant enzymes of Zamioculcas zamiifolia. Ecotox Environ Safe 180:374–383

    CAS  Google Scholar 

  • Radwan DEM (2012) Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pestic Biochem Phys 102:182–188

    CAS  Google Scholar 

  • Radwan DEM, Soltan DM (2012) The negative effects of clethodim in photosynthesis and gas-exchange status of maize plants are ameliorated by salicylic acid pretreatment. Photosynthetica 50(2):171–179

    CAS  Google Scholar 

  • Sabater C, Cuesta A, Carrasco R (2002) Effects of bensulfuron-methyl and cinosulfuron on growth of four freshwater species of phytoplankton. Chemosphere 46:953–960

    CAS  PubMed  Google Scholar 

  • Sarmah AK, Kookana RS, Alston AM (1998) Fate and behavior of triasulfuron, metsulfuron-methyl and chlorsulfuron in the Australian soil environment: a review. Aust J Agric Res 49:775–790

    CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    CAS  PubMed  Google Scholar 

  • Senseman SA (2007) Herbicide handbook, 9th edn. Weed Science Society of America, Champaign

    Google Scholar 

  • Singh S, Singh VP, Prasad SM et al (2019) Interactive effect of silicon (Si) and salicylic acid (SA) in maize seedlings and their mechanisms of cadmium (Cd) toxicity alleviation. J Plant Growth Regul. https://doi.org/10.1007/s00344-019-09958-1

    Article  PubMed  Google Scholar 

  • Singh VP, Singh S, Tripathi DK, Prasad SM, Chauhan DK (eds) (2017) Reactive oxygen species in plants: boon or bane-revisiting the role of ROS. Wiley, Hoboken

    Google Scholar 

  • Smith S, Stewart GR (1990) Effect of potassium levels on the stomatal behavior of the hemi-parasite Striga hermonthica. Plant Physiol 94(3):1472–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souza R, Machado E, Silva J, Lagôa A, Silveira J (2004) Photosynthetic gas ex-change, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56

    CAS  Google Scholar 

  • Subhan D, Murthy SDS (2001) Senescence retarding effect of metal ions: pigment and protein contents and photochemical activities of detached primary leaves of wheat. Photosynthetica 39(1):57

    Google Scholar 

  • Tripathi DK, Mishra RK, Singh S, Singh S, Singh VP, Singh PK, Chauhan DK, Prasad SM, Dubey NK, Pandey AC (2017) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Front Plant Sci 8:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Breusegem F, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Google Scholar 

  • Vicente MRS, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Google Scholar 

  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163(7):723–730

    CAS  PubMed  Google Scholar 

  • Wang CX, Zhang QM (2017) Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum). Ecotoxicol Environ Saf 137:218–224

    CAS  PubMed  Google Scholar 

  • Wang ZX, Chen L, Ai J, Qin HY, Liu YX, Xu PL, Jiao ZQ, Zhao Y, Zhang QT (2012) Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (Vitis amurensis Rupr.). Photosynthetica 50(2):189–196

    CAS  Google Scholar 

  • Xia JB, Zhang GC, Wang RR, Zhang SY (2014) Effect of soil water availability on photosynthesis in Ziziphus jujuba var. spinosus in a sand habitat formed from seashells: comparison of fourmodels. Photosythetica 52(2):253–261

    CAS  Google Scholar 

  • Xia XJ, Huang YY, Wang L, Huang LF, Yu YL, Zhou YH, Yu JQ (2006) Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pestic Biochem Physiol 86:42–48

    CAS  Google Scholar 

  • Yigit E, Akbulut GB, Bayram D, Kaya A, Gok Y (2016) Effect of salicylic acid and selenium on antioxidant system of Avena sativa L. under fenoxaprop-p-ethyl stress. Fresenius Environ Bull 25:874–884

    CAS  Google Scholar 

  • Yuan XY, Guo P, Qi X et al (2013) Safety of herbicide sigma broad on Radix Isatidis (Isatis indigotica Fort.) seedlings and their photosynthetic physiological responses. Pestic Biochem Physiol 106:45–50

    CAS  Google Scholar 

  • Yuan XY, Zhang LG, Ning N et al (2014) Photosynthetic physiological response of radix isatidis (Isatis indigotica Fort.) seedlings to nicosulfuron. PLoS ONE 9(8):e105310

    PubMed  PubMed Central  Google Scholar 

  • Zanganeh R, Jamei R, Rahmani F (2019) Role of salicylic acid and hydrogen sulfide in promoting lead stress tolerance and regulating free amino acid composition in Zea mays L. Acta Physiol Plant 41:94

    Google Scholar 

  • Zhang JJ, Wang YK, Zhou JH et al (2018) Reduced phytotoxicity of propazine on wheat, maize and rapeseed by salicylic acid. Ecotoxol Environ Safe 162:42–50

    CAS  Google Scholar 

  • Zhou QY, Liu WP, Zhang YS et al (2007) Action mechanisms of acetolactate synthase-inhibiting herbicides. Pestic Biochem Physiol 89:89–96

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 31660526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Hua Tan.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Communicated by P. Wojtaszek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YF., Huang, LL., Liu, XL. et al. Exogenous salicylic acid alleviates halosulfuron-methyl toxicity by coordinating the antioxidant system and improving photosynthesis in soybean (Glycine max Merr.). Acta Physiol Plant 42, 85 (2020). https://doi.org/10.1007/s11738-020-03075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03075-3

Keywords

Navigation