Skip to main content
Log in

Combined kernel for fast GPU computation of Zernike moments

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Zernike moments, as a representative orthogonal moment, have been widely applied in the fields of image processing and pattern recognition. The calculations are time-consuming due to the complexity of definition. Based on the GPU octant symmetry algorithm in our previous work, this paper presents a novel algorithm to increase the resource utilization by the combined kernel. Also, it optimizes radial polynomials of Zernike moments to reduce amount of calculations. The experimental results demonstrated that the proposed algorithm achieved overall computational performance improvement for any sized images. Moreover, there is no compromise in terms of precision compared to the typical accurate algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Flusser, J., Zitova, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley, Berlin (2009)

    Book  Google Scholar 

  2. Zheng, W., Mcclarren, R.G.: Semi-analytic benchmark for multi-group free-gas Legendre moments and the application of Gauss quadrature in generating thermal scattering Legendre moments. Ann. Nucl. Energy 85, 1131–1140 (2015)

    Article  Google Scholar 

  3. Chen, B., Coatrieux, G., Wu, J., et al.: Fast computation of sliding discrete Tchebichef moments and its application in duplicated regions detection. IEEE Trans. Signal Process. 63(20), 5424–5436 (2015)

    Article  MathSciNet  Google Scholar 

  4. Chen, J., Li, B.Q., Zhai, H.L., et al.: A practical application of wavelet moment method on the quantitative analysis of Shuanghuanglian oral liquid based on three-dimensional fingerprint spectra. J. Chromatogr. A 1352, 55–61 (2014)

    Article  Google Scholar 

  5. Zhang, G., Luo, Z., Fu, B., et al.: A symmetry and bi-recursive algorithm of accurately computing Krawtchouk moments. Pattern Recognit. Lett. 31(7), 548–554 (2010)

    Article  Google Scholar 

  6. Singh, C., Upneja, R.: Accurate computation of orthogonal Fourier–Mellin moments. J. Math. Imaging Vis. 44(3), 411–431 (2012)

    Article  MathSciNet  Google Scholar 

  7. Singh, C., Aggarwal, A., Ranade, S.K.: A new convolution model for the fast computation of Zernike moments. AEU Int. J. Electron. Commun. 72, 104–113 (2017)

    Article  Google Scholar 

  8. Deng, A.W., Gwo, C.Y.: Fast and stable algorithms for high-order Pseudo Zernike moments and image reconstruction. Appl. Math. Comput. 334, 239–253 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Ping, Z., Ren, H., Zou, J., Sheng, Y., Bo, W.: Generic orthogonal moments: Jacobi–Fourier moments for invariant image description. Pattern Recognit. 40(4), 1245–1254 (2017)

    Article  Google Scholar 

  10. Shao, Z., Shang, Y., Zhang, Y., et al.: Robust watermarking using orthogonal Fourier–Mellin moments and chaotic map for double images. Sig. Process. 120, 522–531 (2016)

    Article  Google Scholar 

  11. Lutovac, B., Daković, M., Stanković, S., et al.: An algorithm for robust image watermarking based on the DCT and Zernike moments. Multimed. Tools Appl. 76(22), 23333–23352 (2017)

    Article  Google Scholar 

  12. Rabatel, G., Labbé, S.: Registration of visible and near infrared unmanned aerial vehicle images based on Fourier–Mellin transform. Precis. Agric. 17(5), 1–24 (2016)

    Article  Google Scholar 

  13. Bera, A., Klesk, P., Sychel, D.: Constant-time calculation of zernike moments for detection with rotational invariance. IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 537–551 (2019)

    Article  Google Scholar 

  14. Konur, U.: Computerized detection of spina bifida using SVM with Zernike moments of fetal skulls in ultrasound screening. Biomed. Signal Process. Control 43(C), 18–30 (2018)

    Article  Google Scholar 

  15. Radhika, K.R., Venkatesha, M.K., Sekhar, G.N.: An approach for on-line signature authentication using Zernike moments. Pattern Recognit. Lett. 32(5), 749–760 (2011)

    Article  Google Scholar 

  16. Zhenjiang, M.: Zernike moment-based image shape analysis and its application. Pattern Recognit. Lett. 21(2), 169–177 (2000)

    Article  Google Scholar 

  17. Kumar, Y., Aggarwal, A., Tiwari, S., et al.: An efficient and robust approach for biomedical image retrieval using Zernike moments. Biomed. Signal Process. Control 39, 459–473 (2018)

    Article  Google Scholar 

  18. Filho, P.P.R., Rebouças, E.D.S., Marinho, L.B., et al.: Analysis of human tissue densities: a new approach to extract features from medical images. Pattern Recognit. Lett. 94, 211–218 (2017)

    Article  Google Scholar 

  19. Xin, Y.: Image reconstruction with polar Zernike moments. In: Singh, S., et al. (eds.) ICAPR 2005, LNCS 3687, pp. 394–403

  20. Singh, C.: Improved quality of reconstructed images using floating point arithmetic for moment calculation. Pattern Recognit. 39, 2047–2064 (2006)

    Article  Google Scholar 

  21. Li, D., et al.: Wavefront processor for liquid crystal adaptive optics system based on graphics processing unit. Opt. Commun. 316, 211–216 (2014)

    Article  Google Scholar 

  22. Sez-Landete, J.: Comments on Fast Computation of Jacobi–Fourier Moments for Invariant Image Recognition. Elsevier, Berlin (2017)

    Book  Google Scholar 

  23. Mukundan, R., Ramakrishnan, K.R.: Fast computation of Legendre and Zernike moments. Pattern Recognit. 28(9), 1433–1442 (1995)

    Article  MathSciNet  Google Scholar 

  24. Gu, J., Shu, H.Z., Toumoulin, C., et al.: A novel algorithm for fast computation of Zernike moments. Pattern Recognit. 35(12), 2905–2911 (2002)

    Article  Google Scholar 

  25. Prata, A., Rusch, W.V.T.: Algorithm for computation of Zernike polynomials expansion coefficients. Appl. Opt. 28(4), 749–754 (1989)

    Article  Google Scholar 

  26. Chong, C.-W., Raveendran, P., Mukundan, R.: A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recognit. 36(3), 731–742 (2003)

    Article  Google Scholar 

  27. Hwang, S.K., Kim, W.Y.: Fast and efficient method for computing ART. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 15(1), 112–117 (2006)

    Article  Google Scholar 

  28. Hwang, S.K., Kim, W.Y.: A novel approach to the fast computation of Zernike moments. Pattern Recognit. 39(11), 2065–2076 (2006)

    Article  Google Scholar 

  29. Singh, C., Upneja, R.: Fast and accurate method for high order Zernike moments computation. Appl. Math. Comput. 218(15), 7759–7773 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Ujaldon, M.: GPU acceleration of Zernike moments for large-scale images. In: IEEE International Symposium on Parallel and Distributed Processing, pp. 1–8. IEEE, New York (2009)

  31. Martín-Requena, M.J., Moscato, P., Ujaldón, M.: Efficient data partitioning for the GPU computation of moment functions. J. Parallel Distrib. Comput. 74, 1994–2004 (2014)

    Article  Google Scholar 

  32. Martín-Requena, M.J., Ujaldón, M.: Leveraging graphics hardware for an automatic classification of bone tissue. In: Computational Vision and Medical Image Processing, pp. 209–228. Springer, Berlin (2011)

  33. Santander-Jimenez, S., Vega-Rodriguez, M.A., Vicente-Viola, J., et al.: Comparative assessment of GPGPU technologies to accelerate objective functions: a case study on parsimony. J. Parallel Distrib. Comput. 126(APR.), 67–81 (2019)

    Article  Google Scholar 

  34. Haidar, A., Abdelfattah, A., Zounon, M., et al.: A guide for achieving high performance with very small matrices on GPU: a case study of batched LU and Cholesky factorizations. IEEE Trans. Parallel Distrib. Syst. 29(5), 973–984 (2018)

    Article  Google Scholar 

  35. Sakdhnagool, P., Sabne, A., Eigenmann, R.: RegDem: increasing GPU performance via shared memory register spilling (2019). arXiv:1907.02894

  36. Xuan, Y., Li, D., Han, W.: Efficient optimization approach for fast GPU computation of Zernike moments. J. Parallel Distrib. Comput. 111, 104–114 (2017)

    Article  Google Scholar 

  37. Zernike, F.: Beugungstheorie des schneidenverfahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1, 689–704 (1934)

    Article  Google Scholar 

  38. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  39. Deng, A.W., Wei, C.H., Gwo, C.Y.: Stable, fast computation of high-order Zernike moments using a recursive method. Pattern Recognit. 56(C), 16–25 (2016)

    Article  Google Scholar 

  40. Singh, C., Walia, E.: Fast and numerically stable methods for the computation of Zernike moments. Pattern Recognit. 43(7), 2497–2506 (2010)

    Article  Google Scholar 

  41. Wende, F., Steinke, T., Cordes, F.: Multi-threaded kernel offloading to GPGPU using Hyper-Q on kepler architecture. Konrad-Zuse-Zentrum für Informationstechnik (2014)

  42. Liang, Y., Huynh, H.P., Rupnow, K., et al.: Efficient GPU spatial–temporal multitasking. IEEE Trans. Parallel Distrib. Syst. 26(3), 748–760 (2015)

    Article  Google Scholar 

  43. Lee, M., Song, S., Moon, J., et al.: Improving GPGPU resource utilization through alternative thread Block scheduling. In: IEEE, International Symposium on High PERFORMANCE Computer Architecture, pp. 260–271. IEEE, New York (2014)

  44. Luley, R.S., Qiu, Q.: Effective utilization of CUDA Hyper-Q for improved power and performance efficiency. In: Parallel and Distributed Processing Symposium Workshops, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), vol. 2016, pp. 1160–1169

  45. CUDA C Best Practices Guide: http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf

  46. Harris, M.: Optimizing parallel reduction in CUDA. http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

  47. Singh, C., Walia, E., Upneja, R.: Accurate calculation of Zernike moments. Inf. Sci. 233, 255–275 (2013)

    Article  MathSciNet  Google Scholar 

  48. Zhu, H., Yang, Y., Zhu, X., et al.: General form for obtaining unit disc-based generalized orthogonal moments. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 23(12), 5455–5469 (2014)

    Article  MathSciNet  Google Scholar 

  49. Shams-Baboli, A., Ezoji, M.: A Zernike moment based method for classification of Alzheimer’s disease from structural MRI. In: International Conference on Pattern Recognition and Image Analysis, pp. 38–43 (2017)

Download references

Acknowledgements

This work was supported by Scientific and technological Development Project of Jilin Province, China (No. 20180201043GX). This work was supported by a Grant from the National Natural Science Foundation of China (No. 61631009). This work was supported by the national key research and development plan of 13th five-year (No. 2017YFB0404800). This work was supported by “the Fundamental Research Funds for the Central Universities” under the Grant (No. 2017TD-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubo Xuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Kuang, X., Zhu, Y. et al. Combined kernel for fast GPU computation of Zernike moments. J Real-Time Image Proc 18, 431–444 (2021). https://doi.org/10.1007/s11554-020-00979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-00979-8

Keywords

Navigation