Skip to main content
Log in

Do sex chromosomes of snakes, monitor lizards, and iguanian lizards result from multiple fission of an “ancestral amniote super-sex chromosome”?

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Sex chromosomes in some amniotes share linkage homologies with distantly related taxa in regions orthologous to squamate reptile chromosome 2 (SR2) and the snake W sex chromosome. Thus, the SR2 and W chromosomes may formerly have been part of a larger ancestral amniote super-sex chromosome. Comparison of various sex chromosomal linkage homologies in Toxicofera with those in other amniotes offers an excellent model to assess key cytological differences, to understand the mechanisms of amniote sex chromosome evolution in each lineage and the existence of an ancestral amniote super-sex chromosome. Chromosome maps of four species of Toxicofera were constructed using bacterial artificial chromosomes (BACs) derived from chicken and zebra finch libraries containing amniote sex chromosomal linkages. Different macrochromosome linkage homologies were highly conserved among Toxicofera, and at least two BACs (CH261-125F1 and CH261-40D6) showed partial homology with sex chromosomes of amniotes associated with SR2, which supports the hypothesis of an ancestral super-sex chromosome with overlaps of partial linkage homologies. The present data also suggest a possible multiple fission mechanism of an ancestral super-sex chromosome, which resulted in further development of various sex chromosomal linkages of Toxicofera based on particular properties that favored the role of sex chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACA:

Anolis carolinensis

ASP:

Apalone spinifera

BACs:

Bacterial artificial chromosomes

CVE:

Calotes versicolor

DAPI:

4′,6-Diamidino-2-phenylindole

EDTA:

Ethylenediaminetetraacetic acid

EQU:

Elaphe quadrivirgata

FBS:

Fetal bovine serum

FISH:

Fluorescent in situ hybridization

FITC:

Fluorescein isothiocyanate

GGA:

Gallus gallus

GHO:

Gekko hokouensis

GIN:

Glyptemys insculpta

GSD:

Genotypic sex determination

HSA:

Homo sapiens

LAG:

Lacerta agilis

LRE:

Leiolepis reevesii rubritaeniata

MEU:

Macropus eugenii

NKA:

Naja kaouthia

OAN:

Ornithorhynchus anatinus

PSI:

Pelodiscus sinensis

PVI:

Pogona vitticeps

QSMI:

Queen Saovabha Memorial Institute

SCR:

Siebenrockiella crassicollis

SSA:

Staurotypus salvinii

STR:

Staurotypus triporcatus

TGU:

Taeniopygia guttata

TSD:

Temperature sex determination

TSE:

Takydromus sexlineatus

VKO:

Varanus komodoensis

VSA:

Varanus salvator macromaculatus

References

  • Acosta A, Martínez-Pacheco ML, Díaz-Barba K, Porras N, Gutiérrez-Mariscal M, Cortez D (2019) Deciphering ancestral sex chromosome turnovers based on analysis of male mutation bias. Genome Biol Evol 11:3054–3067

    Article  PubMed  PubMed Central  Google Scholar 

  • Alam SMI, Sarre SD, Gleeson D, Georges A, Ezaz T (2018) Did lizards follow unique pathways in sex chromosome evolution? Genes (Basel) 9:239

    Article  CAS  Google Scholar 

  • Alföldi J, Palma FD, Grabherr M (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Altmanová M, Rovatsos M, Johnson Pokorná M, Veselý M, Wagner F, Kratochvíl L (2018) All iguana families with the exception of basilisks share sex chromosomes. Zoology (Jena) 126:98–102

    Article  Google Scholar 

  • Ammanna VHF (2015) Calotes versicolor (garden lizard) aggression. Herpetol Rev 46:545–546

    Google Scholar 

  • Augstenová B, Mazzoleni S, Kratochvíl L, Rovatsos M (2018) Evolutionary dynamics of the W chromosome in Caenophidian snakes. Genes 9:5

    Article  CAS  Google Scholar 

  • Badenhorst D, Stanyon R, Engstrom T, Valenzuela N (2013) A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosome Res 21:137–147

    Article  CAS  PubMed  Google Scholar 

  • Carè A, Bellenghi M, Matarrese P, Gabriele L, Salvioli S, Malorni W (2018) Sex disparity in cancer: roles of microRNAs and related functional players. Cell Death Differ 25:477–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chalopin D, Volff JN, Galiana D, Anderson JL, Schartl M (2015) Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res 23:545–560

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity (Edinb) 95:118–128

    Article  CAS  Google Scholar 

  • Damas J, O’Connor R, Farré M, Lenis VPE, Martell HJ, Mandawala A, Fowler K, Joseph S, Swain MT, Griffin DK, Larkin DM (2017) Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res 27:875–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, Fukui K, Graves JAM, Griffin DK, Grutzner F et al (2019) Chromosomics: bridging the gap between genomes and chromosomes. Genes (Basel) 10:627

    Article  CAS  Google Scholar 

  • Dean R, Mank JE (2014) The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data. J Evol Biol 27:1443–1453

    Article  CAS  PubMed  Google Scholar 

  • Eggers S, Sinclair A (2012) Mammalian sex determination—insights from humans and mice. Chromosome Res 20:215–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Mogharbel N, Wakefield M, Deakin JE, Tsend-Ayush E, Grützner F, Alsop A, Ezaz T, Graves JAM (2007) DMRT gene cluster analysis in the platypus: new insights into genomic organization and regulatory regions. Genomics 89:10–21

    Article  CAS  PubMed  Google Scholar 

  • Ezaz T, Deakin JE (2014) Repetitive sequence and sex chromosome evolution in vertebrates. Adv Evol Biol 2014:1–9

    Article  Google Scholar 

  • Ezaz T, Moritz B, Waters P, Graves JAM, Georges A, Sarre SD (2009a) The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosom Res 17:965–973

    Article  CAS  Google Scholar 

  • Ezaz T, Sarre SD, O’Meally D, Graves JAM, Georges A (2009b) Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet Genome Res 127:249–260

    Article  CAS  PubMed  Google Scholar 

  • Ezaz T, Azad B, O’Meally D, Young MJ, Matsubara K, Edwards MJ, Zhang X, Holleley CE, Deakin JE, Graves JAM et al (2013) Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1. BMC Genomics 14:899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ezaz T, Srikulnath K, Graves JAM (2017) Origin of amniote sex chromosomes: an ancestral super-sex chromosome, or common requirements? J Hered 108:94–105

    Article  CAS  PubMed  Google Scholar 

  • Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    Article  CAS  PubMed  Google Scholar 

  • Galián J, Proença SJ, Vogler AP (2007) Evolutionary dynamics of autosomal-heterosomal rearrangements in a multiple-X chromosome system of tiger beetles (Cicindelidae). BMC Evol Biol 7:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gamble T, Zarkower D (2012) Sex determination. Curr Biol 22:R257–R262

    Article  CAS  PubMed  Google Scholar 

  • Gamble T, Geneva AJ, Glor RE, Zarkower D (2014) Anolis sex chromosomes are derived from a single ancestral pair. Evolution 68:1027–1041

    Article  CAS  PubMed  Google Scholar 

  • Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D (2015) Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol Biol Evol 32:1296–1309

    Article  CAS  PubMed  Google Scholar 

  • Gamble T, Castoe TA, Nielsen SV, Banks JL, Card DC, Schield DR, Schuett GW, Booth W (2017) The discovery of XY sex chromosomes in a boa and python. Curr Biol 27:2148–2153

    Article  CAS  PubMed  Google Scholar 

  • Griffin DK, Robertson LB, Tempest HG, Vignal A, Fillon V, Crooijmans RP, Groenen MA, Deryusheva S, Gaginskaya E, Carré W et al (2008) Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution. BMC Genomics 9:168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grützner F, Rens W, Tsend-Ayush E, El-Mogharbel N, O’Brien PC, Jones RC, Ferguson-Smith MA, Marshall Graves JA (2004) In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432:913–917

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Vidal N (2009) Lizards, snakes, and amphisbaenians (Squamata). In: Hedges SB, Kumar S (eds) The Timetree of life, Oxford University Press, pp 383–389

  • Holleley CE, O’Meally D, Sarre SD, Graves JAM, Ezaz T, Matsubara K, Azad B, Zhang X, Georges A (2015) Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523:79–82

    Article  CAS  PubMed  Google Scholar 

  • Iannucci A, Altmanová M, Ciofi C, Ferguson-Smith M, Milan M, Pereira JC, Pether J, Rehák I, Rovatsos M, Stanyon R, Velenský P, Ráb P, Kratochvíl L, Johnson Pokorná M (2019) Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae). Heredity (Edinb) 123:215–227

    Article  Google Scholar 

  • Inamdar DLS, Vani V, Seshagiri PB (2012) A tropical oviparous lizard, Calotes versicolor, exhibiting a potentially novel FMFM pattern of temperature-dependent sex determination. J Exp Zool A Ecol Genet Physiol 317:32–46

    Article  Google Scholar 

  • Johnson NA, Lachance J (2012) The genetics of sex chromosomes: evolution and implications for hybrid incompatibility. Ann N Y Acad Sci 1256:1–22

    Article  Google Scholar 

  • Kawagoshi T, Uno Y, Matsubara K, Matsuda Y, Nishida C (2009) The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Cytogenet Genome Res 125:125–131

    Article  CAS  PubMed  Google Scholar 

  • Kawagoshi T, Nishida C, Matsuda Y (2012) The origin and differentiation process of X and Y chromosomes of the black marsh turtle (Siebenrockiella crassicollis, Geoemydidae, Testudines). Chromosome Res 20:95–110

    Article  CAS  Google Scholar 

  • Kawagoshi T, Uno Y, Nishida C, Matsuda Y (2014) The Staurotypus turtles and aves share the same origin of sex chromosomes but evolved different types of heterogametic sex determination. PLoS One 9:e105315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawai A, Ishijima J, Nishida C, Kosaka A, Ota H, Kohno S, Matsuda Y (2009) The ZW sex chromosomes of Gekko hokouensis (Gekkonidae, Squamata) represent highly conserved homology with those of avian species. Chromosoma 118:43–51

    Article  PubMed  Google Scholar 

  • Khalifa O, Pers Y, Ferreira R, Sénéchal A, Jorgensen C, Apparailly F, Duroux-Richard I (2016) X-linked mirnas associated with gender differences in rheumatoid arthritis. Int J Mol Sci 17:1852

    Article  PubMed Central  CAS  Google Scholar 

  • Kirkpatrick M (2017) The evolution of genome structure by natural and sexual selection. J Hered 108:3–11

    Article  PubMed  Google Scholar 

  • Kopp A (2012) Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 28:175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landeen EL, Presgraves DC (2013) Evolution: from autosomes to sex chromosomes—and back. Curr Biol 23:R848–R850

    Article  CAS  PubMed  Google Scholar 

  • Laopichienpong N, Muangmai N, Chanhome L, Suntrarachun S, Twilprawat P, Peyachoknagul S, Srikulnath K (2017a) Evolutionary dynamics of the gametologous CTNNB1 gene on the Z and W chromosomes of snakes. J Hered 108:142–151

    CAS  PubMed  Google Scholar 

  • Laopichienpong N, Tawichasri P, Chanhome L, Phatcharakullawarawat R, Singchat W, Kantachumpoo A, Muangmai N, Suntrarachun S, Matsubara K, Peyachoknagul S, Srikulnath K (2017b) A novel method of caenophidian snake sex identification using molecular markers based on two gametologous genes. Ecol Evol 7:4661–4669

    Article  PubMed  PubMed Central  Google Scholar 

  • Levan A, Fredga K, Sandberg A (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Lind AL, Lai YYY, Mostovoy Y, Holloway AK, Iannucci A, Mak ACY, Fondi M, Orlandini V, Eckalbar WL, Milan M, Rovatsos M, Kichigin IG, Makunin AI, Johnson Pokorná M, Altmanová M, Trifonov VA, Schijlen E, Kratochvíl L, Fani R, Velenský P, Rehák I, Patarnello T, Jessop TS, Hicks JW, Ryder OA, Mendelson JR 3rd, Ciofi C, Kwok PY, Pollard KS, Bruneau BG (2019) Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nat Ecol Evol 3:1241–1252

    Article  PubMed  PubMed Central  Google Scholar 

  • Lithgow PE, O’Connor R, Smith D, Fonseka G, Al Mutery A, Rathje C, Frodsham R, O’Brien P, Kasai F, Ferguson-Smith MA et al (2014) Novel tools for characterising inter and intra chromosomal rearrangements in avian microchromosomes. Chromosom Res 22:85–97

    CAS  Google Scholar 

  • Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, Matsuda Y (2006) Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci U S A 103:18190–18195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubara K, Kuraku S, Tarui H, Nishimura O, Nishida C, Agata K, Kumazawa Y, Matsuda Y (2012) Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC3 profiling in snake. BMC Genomics 13:604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubara K, O’Meally D, Sarre SD, Georges A, Srikulnath K, Ezaz T (2019) ZW sex chromosomes in Australian dragon lizards (Agamidae) originated from a combination of duplication and translocation in the nucleolar organising region. Genes 10:861

    Article  CAS  PubMed Central  Google Scholar 

  • Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, Isobe T, Ando J, Fujiwara A, Hirao Y, Nishimura O, Ishijima J, Hayashi A, Saito T, Murakami T, Murakami Y, Kuratani S, Agata K (2005) Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosome Res 13:601–615

    Article  CAS  PubMed  Google Scholar 

  • Montiel EE, Badenhorst D, Tamplin J, Burke RL, Valenzuela N (2016) Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma 126:105–113

    Article  PubMed  Google Scholar 

  • Nielsen SV, Guzmán-Méndez IA, Gamble T, Blumer M, Pinto BJ, Kratochvíl L, Rovatsos M (2019) Escaping the evolutionary trap? Sex chromosome turnover in basilisks and related lizards (Corytophanidae: Squamata). Biol Lett 15:20190498

    Article  CAS  PubMed  Google Scholar 

  • O’Connor RE, Romanov MN, Kiazim LG, Barrett PM, Farré M, Damas J, Ferguson-Smith M, Valenzuela N, Larkin DM, Griffin DK (2018a) Reconstruction of the diapsid ancestral genome permits chromosome evolution tracing in avian and non-avian dinosaurs. Nat Commun 9:1883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Connor RE, Farré M, Joseph S, Damas J, Kiazim L, Jennings R, Bennett S, Slack EA, Allanson E, Larkin DM et al (2018b) Chromosome-level assembly reveals extensive rearrangement in saker falcon and budgerigar, but not ostrich, genomes. Genome Biol 19:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Malley B (2017) Anatomy and physiology of reptiles. In: Doneley B, Monks D, Johnson R, Carmel B (eds) reptile medicine and surgery in clinical practice. Wiley, USA, pp 15–32

    Chapter  Google Scholar 

  • O’Meally D, Patel HR, Stiglec R, Sarre SD, Georges A, Graves JAM, Ezaz T (2010) Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosom Res 18:787–800

    Article  CAS  Google Scholar 

  • O’Meally D, Ezaz T, Georges A, Sarre SD, Graves JAM (2012) Are some chromosomes particularly good at sex? Insights from amniotes. Chromosom Res 20:7–19

    Article  CAS  Google Scholar 

  • Olmo E, Signorino GG (2005) Chromorep: a reptiles chromosomes database. http://chromorep.univpm.it/. Accessed 20 Jan 2020

  • Organ CL, Janes DE (2008) Evolution of sex chromosomes in Sauropsida. Integr Comp Biol 48:512–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer DH, Rogers TF, Dean R, Wright AE (2019) How to identify sex chromosomes and their turnover. Mol Ecol 28:4709–4724

    Article  PubMed  PubMed Central  Google Scholar 

  • Pennell MW, Kirkpatrick M, Otto SP, Vamosi JC, Peichel CL, Valenzuela N, Kitano J (2015) Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet 11:e1005237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pokorná M, Kratochvíl L (2009) Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool J Linnean Soc 156:168–183

    Article  Google Scholar 

  • Pokorná M, Giovannotti M, Kratochvíl L, Kasai F, Trifonov VA, O’Brien PCM, Caputo V, Olmo E, Ferguson-Smith MA, Rens W (2011) Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma 120:455

    Article  PubMed  Google Scholar 

  • Presgraves DC (2008) Sex chromosomes and speciation in Drosophila. Trends Genet 24:336–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyron RA, Burbrink FT (2012) Extinction, ecological opportunity, and the origins of global snake diversity. Evolution 66:163–178

    Article  PubMed  Google Scholar 

  • Quinn AE, Sarre SD, Ezaz T, Graves JAM, Georges A (2011) Evolutionary transitions between mechanisms of sex determination in vertebrates. Biol Lett 7:443–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Qvarnström A, Bailey RI (2009) Speciation through evolution of sex-linked genes. Heredity 102:4–15

    Article  PubMed  CAS  Google Scholar 

  • Rice WR, Gavrilets S, Friberg U (2008) Sexually antagonistic “zygotic drive” of the sex chromosomes. PLoS Genet 4:e1000313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rovatsos M, Altmanová M, Pokorná MJ, Kratochvíl L (2014a) Novel X-linked genes revealed by quantitative polymerase chain reaction in the green anole, Anolis carolinensis. G3 (Bethesda) 4:2107–2113

  • Rovatsos M, Pokorná M, Altmanová M, Kratochvíl L (2014b) Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol Lett 10:20131093

    Article  PubMed  PubMed Central  Google Scholar 

  • Rovatsos M, Johnson Pokorná M, Kratochvíl L (2015) Differentiation of sex chromosomes and karyotype characterisation in the dragonsnake Xenodermus javanicus (Squamata: Xenodermatidae). Cytogenet Genome Res 147:48–54

    Article  PubMed  Google Scholar 

  • Rovatsos M, Vukic J, Kratochvil L (2016) Mammalian X homolog acts as sex chromosome in lacertid lizards. Heredity (Edinb) 117:8–13

    Article  CAS  Google Scholar 

  • Rovatsos M, Rehák I, Velenský P, Kratochvíl L (2019) Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Mol Biol Evol 36:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Sarre SD, Ezaz T, Georges A (2011) Transitions between sex-determining systems in reptiles and amphibians. Annu Rev Genomics Hum Genet 12:391–406

    Article  CAS  PubMed  Google Scholar 

  • Schartl M, Schmid M, Nanda I (2016) Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125:553–571

    Article  PubMed  Google Scholar 

  • Singchat W, O’Connor RE, Tawichasri P, Suntronpong A, Sillapaprayoon S, Suntrarachun S, Muangmai N, Baicharoen S, Peyachoknagul S, Chanhome L, Griffin D, Srikulnath K (2018) Chromosome map of the Siamese cobra: did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution? BMC Genomics 19:939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner BM, Robertson LB, Tempest HG, Langley EJ, Ioannou D, Fowler KE, Crooijmans RP, Hall AD, Griffin DK, Völker M (2009) Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis. BMC Genomics 10:357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srikulnath K, Matsubara K, Uno Y, Thongpan A, Suputtitada S, Apisitwanich S, Matsuda Y, Nishida C (2009a) Karyological characterization of the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Squamata) by molecular cytogenetic approach. Cytogenet Genome Res 125:213–223

    Article  CAS  PubMed  Google Scholar 

  • Srikulnath K, Nishida C, Matsubara K, Uno Y, Thongpan A, Suputtitada S, Apisitwanich S, Matsuda Y (2009b) Karyotypic evolution in squamate reptiles: comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae, Serpentes). Chromosome Res 17:975–986

    Article  CAS  PubMed  Google Scholar 

  • Srikulnath K, Uno Y, Matsubara K, Thongpan A, Suputtitada S, Apisitwanich S, Nishida C, Matsuda Y (2011) Chromosomal localization of the 18S-28S and 5S rRNA genes and (TTAGGG)n sequences of butterfly lizards (Leiolepis belliana belliana and Leiolepis boehmei, Agamidae, Squamata). Genet Mol Biol 34:582–586

    Article  Google Scholar 

  • Srikulnath K, Uno Y, Nishida C, Matsuda Y (2013) Karyotype evolution in monitor lizards: cross-species chromosome mapping of cDNA reveals highly conserved synteny and gene order in the Toxicofera clade. Chromosome Res 21:805–819

    Article  CAS  PubMed  Google Scholar 

  • Srikulnath K, Matsubara K, Uno Y, Nishida C, Olsson M, Matsuda Y (2014) Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards. Chromosoma 123:563–575

    Article  PubMed  Google Scholar 

  • Srikulnath K, Uno Y, Nishida C, Ota H, Matsuda Y (2015) Karyotype reorganization in the Hokou gecko (Gekko hokouensis, Gekkonidae): the process of microchromosome disappearance in Gekkota. PLoS One 10:e0134829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srikulnath K, Azad B, Singchat W, Ezaz T (2019) Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania. PLoS One 14:e0212683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supikamolseni A, Ngaoburanawit N, Sumontha M, Chanhome L, Suntrarachun S, Peyachoknagul S, Srikulnath K (2015) Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand. Genet Mol Res 14:13981–13997

    Article  CAS  PubMed  Google Scholar 

  • Tawichasri P, Laopichienpong N, Chanhome L, Phatcharakullawarawat R, Singchat W, Koomgun T, Prasongmaneerut T, Rerkamnuaychoke W, Sillapaprayoon S, Muangmai N et al (2017) Using blood and non-invasive shed skin samples to identify sex of caenophidian snakes based on multiplex PCR assay. Zool Anz 271:6–14

    Article  Google Scholar 

  • Thongchum R, Singchat W, Laopichienpong N, Tawichasri P, Kraichak E, Prakhongcheep O, Sillapaprayoon S, Muangmai N, Baicharoen S, Suntrarachun S et al (2019) Diversity of PBI-DdeI satellite DNA in snakes correlates with rapid independent evolution and different functional roles. Sci Rep 9:15459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tumkiratiwong P, Meesuk W, Chanhome L, Aowphol A (2012) Reproductive patterns of captive male and female monocled cobra, Naja kaouthia (Lesson, 1831). Zool Stud 51:692–700

    Google Scholar 

  • Turpin R, Lejeune J (1965) Les Chromosomes Humains. Gauthier-Villars, Paris

    Google Scholar 

  • Uetz P, Freed P, Hošek J (eds.) (2019) The reptile database, http://www.reptile-database.org, accessed December 22, 2019

  • Uno Y, Nishida C, Tarui H, Ishishita S, Takagi C, Nishimura O, Ishijima J, Ota H, Kosaka A, Matsubara K et al (2012) Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLoS One 7:e53027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela N, Adams DC (2011) Chromosome number and sex determination coevolve in turtles. Evolution 65:1808–1813

    Article  PubMed  Google Scholar 

  • Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, Grützner F, Deakin JE, Whittington CM, Schatzkamer K, Kremitzki CL, Graves T, Ferguson-Smith MA, Warren W, Marshall Graves JA (2008) Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res 18:965–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuillaume B, Valette V, Lepais O, Grandjean F, Breuil M (2015) Genetic evidence of hybridization between the endangered native species Iguana delicatissima and the invasive Iguana iguana (Reptilia, Iguanidae) in the Lesser Antilles: management implications. PLoS One 10:e0127575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Webster KA, Schach U, Ordaz A, Steinfeld JS, Draper BW, Siegfried KR (2017) Dmrt1 is necessary for male sexual development in zebrafish. Dev Biol 422:33–46

    Article  CAS  PubMed  Google Scholar 

  • Young MJ, O’Meally D, Sarre SD, Georges A, Ezaz T (2013) Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae). Chromosom Res 21:361–374

    Article  CAS  Google Scholar 

  • Zug GR, Brown HHK, Schulte JA, Vindum JV (2006) Systematics of the garden lizards, Calotes versicolor group (Reptilia, Squamata, Agamidae), in Myanmar: central dry zone populations. Proc Calif Acad Sci 57:35–68

    Google Scholar 

Download references

Acknowledgments

We extend grateful thanks to Lawan Chanhome, Tanapong Tawan, Taksa Vasaruchapong, and Panithi Laoungbua (Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Thailand) and the Conservation Research and Education Division, Zoological Park Organization, Dusit, Bangkok, Thailand, for help with sample collection and advice on sample preparation.

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This study was financially supported by grants from the Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU, Thailand) (nos. 6/2558 and 9/2559) awarded to KS, Thailand Research Fund (TRF) (nos. RSA6180075 and PHD60I0014) awarded to KS and WS, Thailand Research Fund-Newton Fund Ph.D. Placement (no. GA/PhD/scholar/Year5/007) awarded to WS, and the Thailand Research Fund-Newton Fund Placement, Travel Grant for PhD Supervisors (GA/PhD/Sup/Year4/003) awarded to KS. This work was also funded in part by the Biotechnology and Biological Sciences Research Council (BB/K008161/1) to the University of Kent (DKG).

Author information

Authors and Affiliations

Authors

Contributions

W.S. and K.S. drafted the manuscript; W.S., B.E.O., D.K.G., and K.S. conceived the ideas and designed methodology; W.S. and K.S. carried out the lab work; W.S. and K.S. participated in data analysis; W.S., S.S., N.M., S.B., C.I., P.D., S.P., B.E.O., D.K.G., and K.S. reviewed the data and the manuscript. All authors gave final approval for publication.

Corresponding author

Correspondence to Kornsorn Srikulnath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Animal care and all experimental procedures were approved by the Animal Experiment Committee, Kasetsart University, Thailand (approval nos. ACKU61-SCI-021, ACKU61-SCI-023, and ACKU61-SCI-024) and conducted in accordance with the Regulations on Animal Experiments at Kasetsart University.

Additional information

Responsible Editor: Fengtang Yang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rebecca E O’Connor, Darren K Griffin, and Kornsorn Srikulnath are joint last authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singchat, W., Sillapaprayoon, S., Muangmai, N. et al. Do sex chromosomes of snakes, monitor lizards, and iguanian lizards result from multiple fission of an “ancestral amniote super-sex chromosome”?. Chromosome Res 28, 209–228 (2020). https://doi.org/10.1007/s10577-020-09631-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-020-09631-4

Keywords

Navigation