Skip to main content
Log in

Taxonomy and phylogenetic relationship of zokors

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Zokor (Myospalacinae) is one of the subterranean rodents, endemic to east Asia. Due to the convergent and parallel evolution induced by its special lifestyles, the controversies in morphological classification of zokor appeared at the level of family and genus. To resolve these controversies about taxonomy and phylogeny, the phylogenetic relationships of 20 species of Muroidea and six species of zokors were studied based on complete mitochondrial genome and mitochondrial Cytb gene, respectively. Phylogeny analysis of 20 species of Muroidea indicated that the zokor belonged to the family Spalacidae, and it was closer to mole rat rather than bamboo rat. Besides, by investigating the phylogenetic relationships of six species of zokors, the status of two genera of Eospalax and Myospalax was affirmed because the two clades differentiated in phylogenetic tree represented two types of zokors, convex occiput type and flat occiput type, respectively. In addition, the two origins in Eospalax were found diverged at 3.71 million years ago (Ma) based on estimation of divergence time. It is suggested that the climate and ecology changes caused by the Qinghai-Tibet Plateau uplift event in 3.6 Ma led to the inner divergence of Eospalax. The intraspecific phylogenetic relationships of partial zokors were well resolved, the two clades of Eospalax cansus represented two geographical populations, respectively, and the divergent pattern of Eospalax baileyi was characterized by allopatric divergence spatially. In this study, we explored the taxonomic status and phylogenetic relationships of Myospalacinae at the molecular level. These works would be significant to understanding the evolutionary process and to clarify the mechanism of differentiation of Myospalacinae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alexandros S. 2006 RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.

    Google Scholar 

  • Allen G. M. 1940 The mammals of China and Mongolia. Natural history of Central Asia. In The American museum of natural history, vol. 11, pp. 1−620. Natural History of Central Asia, New York.

  • Alston E. R. 1876 On the classification of the Order Glires. Proc. Zool. R. Soc. London, Ser. B. 44, 61–98.

    Google Scholar 

  • Bouckaert R., Heled J., Denise Kühnert., Vaughan T. and Drummond A. J. 2014 BEAST 2: A Software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, 1–8.

    Google Scholar 

  • Carleton M. D. and Musser G. G. 1984 Muroid rodents. In Orders and families of recent mammals of the world (ed. S. Anderson and J. K. Jones), pp. 289−379. John Wiley, New York.

    Google Scholar 

  • Corbet G. B. and Hill J. E. 1991 The mammals of the Indo-Malayan region: A systematic review. Oxford University Press, Oxford.

    Google Scholar 

  • Darriba D., Taboada G. L., Doallo R. and Posada D. 2012 jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond A. J. and Rambaut A. 2007 BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 210–214.

    Google Scholar 

  • Ellerman J. R. and Morrison-Scott T. C. S. 1953 Checklist of Palaearctic and Indian Mammals—Amendments. J. Mammal. 34, 1−8.

    Google Scholar 

  • Fan N. C. and Shi Y. Z. 1982 A revision of the zokors of subgenus Eospalax. Acta Theriolog. Sin. 2,183–199.

    Google Scholar 

  • Flynn and Lawrence J. 2009 Chapter 4. The antiquity of rhizomys and independent acquisition of fossorial traits in subterranean muroids. Bull. Am. Museum Nat. Hist. 331, 128−156.

  • Jansa S. A. and Weksler M. 2004 Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol. Phylogenet. Evol. 31, 256−276.

    CAS  PubMed  Google Scholar 

  • Jansa S. A., Giarla T. C. and Lim B. K. 2009 The phylogenetic position of the rodent genus Typhlomys and the geographic origin of Muroidea. J. Mammal.. 90, 1083–1094.

    Google Scholar 

  • Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G. and Gibson T. J. 1998 Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403–405.

    CAS  PubMed  Google Scholar 

  • Kimura M. 1980 A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16,111−120.

    CAS  PubMed  Google Scholar 

  • Lacey E. A., Patton J. L. and Cameron G. N. 2001 Life underground: the biology of subterranean rodents. Aust. Mammal.. 23, 75−76.

    Google Scholar 

  • Lanfear R., Frandsen P. B., Wright A. M., Senfeld T. and Calcott B. 2017 PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773.

    CAS  PubMed  Google Scholar 

  • Lawrence M. A. 1991 A fossil Myospalax occiput (Rodentia: Muridae) from Shanxi, China, with observations on zokor relationships. Bull. Am. Museum Nat. Hist. 206, 261–286.

    Google Scholar 

  • Li J. J. and Fang X. M. 1998 Study on uplift and environmental change of Qinghai-Tibet Plateau. Chin. Sci. Bull. 43, 1569−1574.

    Google Scholar 

  • Li X. C. and Wang T. Z. 1996 The classification and phylogeny of the genus Eospalax. J. Shaanxi Normal Uni. (Nat. Sci. Edi.) 3, 75–78.

    Google Scholar 

  • Lin G. H., Wang K., Deng X. G., Nevo E., Zhao F., Su J. P. et al. 2014 Transcriptome sequencing and phylogenomic resolution within Spalacidae (Rodentia). BMC Genomics 15, 32−32.

    PubMed  PubMed Central  Google Scholar 

  • Luo Z. X., Chen W., Gao W., Wang Y. X. and Li C.Y. 2000 Fauna sinica: mammalia, vol. 6. Rodentia, part III: Cricetidae. Science Press, Beijing.

  • Marshall E. 2005 Will DNA bar codes breathe life into classification? Science 307, 1037–1037.

    CAS  PubMed  Google Scholar 

  • McKenna M. C. and Bell S. K. 1997 Classification of mammals: above the species level, pp. 1−631. Columbia University Press, New York.

    Google Scholar 

  • Miller G. S. and Gidley J. W. 1918 Synopsis of the supergeneric groups of rodents. J. Wash. Acad. Sci. 8, 431–448.

    Google Scholar 

  • Nguyen L. T., Schmidt H. A., Haeseler A. V. and Minh B. Q. 2015 IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268−274.

    CAS  PubMed  Google Scholar 

  • Norris R. W., Zhou K. Y., Zhou C. Q., Yang G., William K. C. and Honeycutt R. L. 2004 The phylogenetic position of the zokors (Myospalacinae) and comments on the families of muroids (Rodentia). Mol. Phylogenet. Evol. 31, 972–978.

    CAS  PubMed  Google Scholar 

  • Pavlinov I. A. 2003 Systematics of recent mammals, pp. 85–92. Moscow University, Moscow,

    Google Scholar 

  • Pavlinov I. A. and Lissovsky A. A. 2012 The mammals of Russia: a taxonomic and geographic reference, pp. 202−210. KMK Scientific, Moscow.

    Google Scholar 

  • Perdiguero E. G., Klapproth K., Schulz C., Busch K., Azzoni E., Crozet L. et al. 2015 Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547−551.

    CAS  Google Scholar 

  • Ronquist F. and Huelsenbeck J. P. 2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.

    CAS  PubMed  Google Scholar 

  • Smith A. T. and Xie Y. 2009 Chinese wildlife manual, pp. 88−92. Hunan Education Press, Changsha.

    Google Scholar 

  • Song S. Y. 1986 A revision of the two species of the zokors on subgenus Eospalax. La Ani. Mondo 3, 31–39.

    Google Scholar 

  • Su J. H., Wang J., Liu R. T., Hua L. M., Wu J. P. and Liu F. Y. 2011 Species validities of zokors (Mysopalacinae) inferred from mt DNA sequences variations. Acta Agrestia Sin. 19, 694−698.

    CAS  Google Scholar 

  • Su J., Ji W., Wang J., Gleeson D. M., Zhou J. W., Hua L. M. et al. 2013 Phylogenetic relationships of extant zokors (Myospalacinae) (Rodentia, Spalacidae) inferred from mitochondrial DNA sequences. Mitochondr. DNA 25, 135–141.

    Google Scholar 

  • Tang L., Wang L., Cai Z., Zhang T. Z., Ci H. X., Lin G. H. et al. 2010 Allopatric divergence and phylogeographic structure of the plateau zokor (Eospalax baileyi), a fossorial rodent endemic to the Qinghai-Tibetan Plateau. J. Biogeogr. 37, 657−668.

    Google Scholar 

  • Thomas O. 1896 On the genera of rodents: an attempt to bring up to date the current arrangement of the order. Proc. Zool. Soc. Lond. 64, 1012–1028.

    Google Scholar 

  • Tullberg T. 1899 Ueber das System der Nagethiere: eine phylogenetische Studie, pp. 1–514. Akademische Buchdruckerei, Uppsala.

  • Wang T. Z. 1993 Rodent Fauna of Shaanxi. Shaanxi Normal University Press, Xian.

    Google Scholar 

  • Wang Y. X. 2003 Taxonomic directory and distribution of mammal species and subspecies in China. China Forestry Publishing House, Beijing.

    Google Scholar 

  • Wilson D. E. and Reeder D. M. 2005 Mammal species of the world: a taxonomic and geographic reference. vol. 1, JHU Press, Baltimore.

    Google Scholar 

  • Yang H. S, He X. Q., Liu R. T., Zhang S. L. and Chang G. Z. 2009 The study of phylogeny of Eospalax in Gansu. Acta Pratacul. Sin. 18, 204−209.

    Google Scholar 

  • Zhao F., Deng X. G., Zhang T. Z., Su J. P. and Lin G. H. 2015 Molecular authentication of Sailonggu and its resource distribution in Qinghai-Tibet Plateau. Chin. J. Tradition. Med. 40, 399.

    CAS  Google Scholar 

  • Zheng S. H. 1994 Classification and evolution of the Siphneidae In Rodent and lagomorph families of Asian origins and diversification (ed. Y. Tomida Y., C. K. Li and T. Setoguchi), pp. 57–76. National Science Museum Monographs, Tokyo.

    Google Scholar 

  • Zheng S. H. 1997 Evolution of the Mesosiphneinae (Siphneidae, Rodentia) and environmental change. In Evidence for Evolution-Essays in Honor of Prof. Chungchien Young on the Hundredth Anniversary of His Birth (ed. Y. S. Tong, Y. Y. Zhang, W. Y. Wu, L. J. Li and L. Q. Shi), pp 137–150. China Ocean Press, Beijing.

    Google Scholar 

  • Zhou C. Q. and Zhou K. Y. 2008 The validity of different zokor species and the genus Eospalax inferred from mitochondrial gene sequences. Integr. Zool 3, 290−298.

    PubMed  Google Scholar 

  • Zhou C. Q., Zhou K. Y. and Zhang S. 2004 Molecular Authentication of the Animal Crude Drug Sailonggu (Bone of Myospalax baileyi). Biol. Pharm. Bull. 27, 1850–1858.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Forest Disease and Pest Control Quarantine Station of Ningxia Hui Autonomous Region for collecting samples of Gansu zokor. This work was supported by the National Key Programme of Research and Development (2017YFD0600103-4-1) and National Promoted Programme of scientific and technological achievements in Forestry and Grassland (201929), and the Key Laboratory of Forestry and Grassland Administration in China on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chongxuan Han or Xiaoning Nan.

Additional information

Corresponding editor: H. A. Ranganath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Xu, M., Ren, S. et al. Taxonomy and phylogenetic relationship of zokors. J Genet 99, 38 (2020). https://doi.org/10.1007/s12041-020-01200-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01200-2

Keywords

Navigation