Skip to main content
Log in

Olonkhuduk Anorthosite Pluton of the Baidaric Terrane of the Central Asian Orogenic Belt: Geological Position and Age

  • Published:
Petrology Aims and scope Submit manuscript

Abstract–Anorthosites of the Olonkhuduk pluton of the Central Asian Orogenic Belt are dated at 1772 ± 1 Ma (ID TIMS U-Pb zircon method). Similar age estimate (1784 ± 10 Ma) was previously obtained for anorthosite of the Khungilingol pluton from the Ider block of the Tarbagatai terrane. These data indicate a significant time gap (70–60 Ma) between the collision that formed the Early Precambrian blocks of the Baidaric and Tarbagatai terranes in the range 1860–1850 Ma and the emplacement of the anorthosites. The termination of accretion-collision processes and consolidation of the Early Precambrian block of the Baidaric terrain are marked by the postkinematic subalkaline granites with an age of 1825 ± 5 Ma. Geochemically, the anorthosites of the Olonkhuduk and Khungilingol plutons are similar to the typical anorthosites of ancient cratons. Sm-Nd isotopic data indicate a mixed source of these anorthosites: juvenile mantle component of Paleoproterozoic age and crustal component of Neoarchean age. It can be assumed that the primary mafic magma of the anorthosites experienced a significant crustal contamination. Based on the similar geologic setting, age, and composition, the anorthosites of the Olonkhuduk and Khungilingol plutons can be ascribed to a single within-plate complex. The age values obtained for the anorthosites coincide with the estimated age of rift magmatism in the North China craton at 1.8–1.75 Ga and the emplacement time of mafic dikes swarms at 1778 ± 3 Ma (SIMS U-Pb method). Thus, the considered Early Precambrian blocks by the end of the Paleoproterozoic (about 1900–1850 Ma) could be a part of the Columbia supercontinent (Rogers and Santosh, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Anisimova, I.V., Kozakov, I.K., Yarmolyuk, V.V., et al., Age, sources, and geological position of anorthosites of Precambrian terranes of Central Asia: example from the Khunzhilingol massif, Mongolia, Dokl. Earth Sci., 2009, vol. 428, no. 1, pp. 1120–1125.

    Article  Google Scholar 

  2. Ashwal, L.D., Anorthosites, Berlin: Springer-Verlag, 1993.

    Book  Google Scholar 

  3. Bibikova, E.V., Gracheva, T.V., Kozakov, I.K., and Plotkina, Yu.V., U-Pb age of hypersthenes granites (kuzeevites) of the Angara–Kan protrusion (Yenisei Range), Russ. Geol. Geophys., 2001, pp. 864–867.

  4. Demoux, A., Kroner, A., Badarch, G., et al., Zircon ages from the Baydrag Block and the Bayankhongor ophiolite zone: time constraints on Late Neoproterozoic to Cambrian subduction- and accretion-related magmatism in Central Mongolia, J. Geol., 2009, vol. 117, pp. 377–397.

    Article  Google Scholar 

  5. DePaolo, D.J., Isotopic studies of processes in mafic magma chambers: I. The Kiglapait intrusion, Labrador, J. Petrol., 1985, vol. 26, pp. 925–951.

    Article  Google Scholar 

  6. Emslie, R.F., Hamilton, M.A., and Theriault, R.J., Petrogenesis of a mid-Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) complex: isotopic and chemical evidence from the Nain plutonic suite, J. Geol., 1994, vol. 102, no. 5, pp. 539–558.

    Article  Google Scholar 

  7. Frost, C.D., Frost, B.R., Bell, J.M., and Chamberlain, K.R., The relationship between a-type granites and residual magmas from anorthosite; evidence from the northern Sherman batholith, Laramie Mountains, Wyoming, USA, Precambrian Res., 2002, vol. 45, pp. 45–71.

    Article  Google Scholar 

  8. Gladkochub, D.P., Pisarevskii, S.A., Ernst, R., et al., Large igneous province of about 1750 Ma in the Siberian Craton, Dokl. Earth Sci., 2010, vol. 430, no. 2, pp. 168–171.

    Article  Google Scholar 

  9. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  10. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  11. Karta geologicheskikh formatsii Mongol’skoi Narodnoi Respubliki. Masshtab 1:1500000 (Map of the Geological Formations of the Mongolian People’s Republic. Scale 1:1500000), Yanshin, A.L., Eds., Moscow: GUGK SSSR, 1989.

  12. Kozakov, I.K., Kuznetsov, A.B., Erdenezhargal, Ch., et al., Neoproterozoic complexes of the shelf cover of the Dzabkhan terrane basement in the Central Asian Orogenic Belt, Stratigraphy. Geol. Correlation, 2017, vol. 25, no. 5, pp. 479–491.

    Article  Google Scholar 

  13. Kozakov, I.K., Kotov, A.B., Kovach, V.P., and Sal’nikova, E.B., Crustal growth in the geologic evolution of the Baidarik Block, Central Mongolia: evidence from Sm-Nd isotopic systematic, Petrology, 1997, vol. 5, no. 3, pp. 201–207.

    Google Scholar 

  14. Kozakov I.K., Kovach V.P., Bibikova E.V., et al., Late Riphean episode in the formation of crystalline rock complexes in the Dzabkhan microcontinent: geological, geochronologic, and Nd isotopic-geochemical data, Petrology, 2014, vol. 22, no. 5, pp. 480–506.

    Article  Google Scholar 

  15. Kozakov, I.K., Kozlovskii, A.M., Yarmolyuk, V.V., et al., Crystalline complexes of the Tarbagatai Block of the Early Caledonian superterrane of Central Asia, Petrology, 2011, vol. 19, no. 4, pp. 426–444.

    Article  Google Scholar 

  16. Kozakov, I.K., Sal’nikova, E.B., Kovach, V.P., et al., Main stages in the evolution and geodynamic setting of the South Hangay metamorphic belt, Central Asia, Petrology, 2015, vol. 23, no. 4, pp. 309–330.

    Article  Google Scholar 

  17. Kozakov, I.K., Sal’nikova, E.B., Wang, T., et al., Early Precambrian crystalline complexes of the Central Asian microcontinent: age, sources, tectonic position, Stratigraphy. Geol. Correlation, 2007, vol. 15, no. 2, pp. 121–140.

    Article  Google Scholar 

  18. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.

    Article  Google Scholar 

  19. Krogh, T.E., Improved accuracy of U-Pb zircon by the creation of more concordant systems using an air abrasion technique, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 637–649.

    Article  Google Scholar 

  20. Kröner, A., Lehmann, J., Schulmann, K., et al., Lithostratigraphic and geochronological constraints on the evolution of the central Asian orogenic belt in SW Mongolia: Early Paleozoic rifting followed by Late Paleozoic accretion, Am. J. Sci., 2010, vol. 310, pp. 523–574.

    Article  Google Scholar 

  21. Kröner, A., Kovach, V.P., Kozakov, I.K., et al., Zircon ages and Nd-Hf isotopes in UHT granulites of the Ider Complex: a cratonic terrane within the Central Asian Orogenic Belt in NW Mongolia, Gondwana Res., 2015, vol. 27, pp. 1392–1406.

    Article  Google Scholar 

  22. Kröner, A., Kovach, V., Kozakov, I., et al., Granulites and Palaeoproterozoic lower crust of the Baidarik block, Central Asian Orogenic Belt of NW Mongolia, J. Asian Earth Sci., 2017, vol. 145, pp. 393–407.

    Article  Google Scholar 

  23. Larin, A.M., Granity rapakivi i assotsiiruyushchie porody (Rapakivi-Granites and Associated Rocks), St. Petersburg: Nauka, 2011.

  24. Lu, S., Zhao, G., Wang, Hu., Hao, G., et al., Precambrian metamorphic basement and sedimentary cover of North China Craton: a review, Precambrian Res., 2008, vol. 160, pp. 77–93.

    Article  Google Scholar 

  25. Ludwig, K.R., PbDat for MS-DOS, version 1.21, U.S. Geol. Surv. Open-File Rept, 1991, no. 88-542.

  26. Ludwig, K.R., Isoplot 3.70. A geochronological toolkit for Microsoft Excel, Berkeley. Geochronol. Center Spec. Publ., 2003, vol. 4.

    Google Scholar 

  27. Nozhkin, A.D., Bayanova, T.B., and Turkina, O.M., Early Proterozoic collisional and within-plate granitoids of the southwestern margin of the Siberian Craton: petrological-geochemical features, U-Pb geochronological and Sm-Nd isotope data, Izotopnoe datirovanie protsessov rudoobrazovaniya, magmatizma, osadkonakopleniya i metamorfizma. III Rossiiskaya konferentsiya po izotopnoi geokhronologii (Isotope dating of Ore Formation, Magmatism, Sedimentation, and Metamorphism. 3rd Russian Conference on Isotope Geochronology), Moscow: GEOS, 2006, vol. 2, pp. 70–75.

  28. Polyakov, G.V., Izokh, A.E., and Krivenko, A.P., Gabbroanorthosite Formation of Mongolia, Dokl. Akad. Nauk SSSR, 1983, vol. 270, no. 4, pp. 955–959.

    Google Scholar 

  29. Rogers, J.J.W. and Santosh, M., Configuration of Columbia, a Mesoproterozoic supercontinent, Gondwana Res., 2002, vol. 5, no. 1, pp. 5–22.

    Article  Google Scholar 

  30. Rudnick, R.L. and Gao, S., Composition of the continental crust, Treatise on Geochemistry, Holland, H.D. and Turekian, K.K., Eds., Elsevier, 2003, pp. 1–64.

  31. Stacey, J.S. and Kramers, I.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.

    Article  Google Scholar 

  32. Steiger, R.H. and Jager, E., Subcomission of geochronology: convention of the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 2, pp. 359–362.

    Article  Google Scholar 

  33. Sukhanov, M.K., Troitskii, V.A., and Bayarbileg, L., Evidence for the Precambrian age of anorthosites of the Mongolian People’s Republic, Dokl. Akad. Nauk SSSR, 1988, vol. 298, no. 4, pp. 952–955.

    Google Scholar 

  34. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematic of oceanic basalts: implications for mantel composition and processes, Magmatism in Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. London, Spec. Publ., 1989, vol. 42, pp. 313–346.

  35. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Composition and Evolution, Oxford: Blackwell Scientific Publications, 1985.

    Google Scholar 

  36. Turkina, O.M., Bibikova, E.V., and Nozhkin, A.D., Stages and geodynamic settings of Early Proterozoic granite formation on the southwestern margin of the Siberian Craton, Dokl. Earth Sci., 2003, vol. 389, no. 2, pp. 159–163.

    Google Scholar 

  37. Yarmolyuk, V.V., Kozlovsky, A M., Sal’nikova, E.B., et al., Age of the Khangai batholith and challenge of polychronic batholith formation in Central Asia, Dokl. Earth Sci., 2013, vol. 452, no. 2, pp. 1001–1007.

    Article  Google Scholar 

  38. Yarmolyuk, V.V., Kozlovsky, A.M., Savatenkov, V.M., et al., Composition, sources, and geodynamic nature of giant batholiths in Central Asia: evidence from the geochemistry and Nd isotopic characteristics of granitoids in the Khangai Zonal magmatic area, Petrology, 2016, vol. 24, no. 5, pp. 433–461.

    Article  Google Scholar 

  39. Yarmolyuk V.V., Kozlovskii A.M., Travin A.V., et al., Duration and geodynamic nature of giant Central Asian Batholiths: geological and geochronological studies of the Khangai Batholith, Stratigraphy. Geol. Correlation, 2019, vol. 27, no. 1, pp. 73–94.

    Article  Google Scholar 

  40. Zaitsev, N.S., Tectonics of Mongolia, Evolyutsiya geologicheskikh protsessov i metallogeniya Mongolii (Evolution of Geological Processes and Metallogeny of Mongolia), Moscow: Nauka, 1990, pp. 15–22.

    Google Scholar 

  41. Zhai, M. and Liu, W., Palaeoproterozoic tectonic history of the North China Craton: a review, Precambrian Res., 2003, vol. 122, pp. 183–199.

    Article  Google Scholar 

  42. Zhang, S.-H., Liu, S.-W., Zhao, Y., et al., The 1.75–1.68 Ga anorthosite–mangerite–alkali granitoid–rapakivi granite suite from the northern North China Craton: magmatism related to a Paleoproterozoic orogeny, Precambrian Res., 2007, vol. 155, pp. 287–312.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.M. Savatenkov for consultation and constructive comments during preparation of this paper.

Funding

The studies were supported by the Russian Science Foundation (project no. 18-17-00229) and by the State Task of the Institute of the Precambrian Geology and Geochronology of the Russian Academy of Sciences (task no. 0153-2019-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kozakov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozakov, I.K., Anisimova, I.V., Salnikova, E.B. et al. Olonkhuduk Anorthosite Pluton of the Baidaric Terrane of the Central Asian Orogenic Belt: Geological Position and Age. Petrology 28, 141–150 (2020). https://doi.org/10.1134/S0869591120020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120020046

Keywords:

Navigation