Skip to main content
Log in

Fine Structure of the Crossing Resonance Spectrum of Wavefields in an Inhomogeneous Medium

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The crossing resonance of two wavefields m(x, t) and u(x, t) of different natures in an inhomogeneous medium with zero mean value of the coupling parameter η between fields has been studied. The stages of formation of the fine structure of the crossing resonance have been analyzed. It has been shown within the model of independent crystallites that the removal of the degeneracy of eigenfrequencies of these fields at the crossing resonance point has a threshold character in the coupling parameter and occurs under the condition η > ηc, where ηc = |Γu – Γm|/2, Γu and Γm are the relaxation parameters of the corresponding wavefields. At η > ηc, each random implementation of the Green’s functions \(\tilde {G}_{{mm}}^{{''}}\) and \(\tilde {G}_{{uu}}^{{''}}\) of wavefields has the form of two resonance peaks with the same half-width (Γu + Γm)/2 spaced by the interval 2η; this form is standard for crossing resonances. At η < ηc, the functions \(\tilde {G}_{{mm}}^{{''}}\) and \(\tilde {G}_{{uu}}^{{''}}\) are different: if Γu > Γm, the function \(\tilde {G}_{{mm}}^{{''}}\) has the form of a narrow resonance peak at ω = ωr, whereas the function \(\tilde {G}_{{uu}}^{{''}}\) has the form of a broader resonance peak split at the top by a narrow antiresonance. Averaging over regions where η > ηc leads to the formation of a broad resonance with a resonance line half-width of about 〈η21/2 on the both averaged Green’s functions, which is due to the stochastic distribution of resonance frequencies. Averaging over regions where η < ηc results in the sharpening of a resonance peak on the function \(G_{{mm}}^{{''}}\) and an antiresonance peak on the function \(G_{{uu}}^{{''}}\) at the same frequency ω = ωr. As a result, a pattern of the crossing resonance in the inhomogeneous medium is formed, consisting of identical broad peaks on both functions with the narrow resonance peak of the fine structure on the function \(G_{{mm}}^{{''}}\) and the antiresonance peak on the function \(G_{{uu}}^{{''}}\). Thus, the fine structure of the spectrum of any crossing resonance of two wavefields of different natures in the inhomogeneous medium is due to the contribution of random realizations corresponding to degenerate states of the natural oscillations of the system. In a ferromagnet with a spatially inhomogeneous coupling parameter, spin and elastic waves acquire damping parameters Γm(k) ∝ kc\({{{v}}_{m}}\) and Γu(k) ∝ kc\({{{v}}_{u}}\) proportional to the correlation wavenumber kc of inhomogeneities and to the velocities of the corresponding waves, which are summed with the homogeneous damping parameters Γm and Γu of the same waves. This situation has been considered in a new self-consisting approximation for the case where the contribution of homogeneous damping parameters is negligibly small. It has been shown that the form of the fine structure on the functions \(G_{{mm}}^{{''}}\) and \(G_{{uu}}^{{''}}\) at the second (high-frequency) crossing point of dispersion curves of spin and elastic waves changes to the opposite form: narrow resonance peaks of the fine structure appear on the function \(G_{{uu}}^{{''}}\), and antiresonance peaks arise on the function \(G_{{mm}}^{{''}}\) because \({{{v}}_{m}}\) < \({{{v}}_{u}}\) and \({{{v}}_{m}}\) > \({{{v}}_{u}}\) at the first and second crossing points, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. I. Akhiezer, in Proceedings of the Workshop on Physics of Magnetic Phenomena, Moscow, May 23–31, 1956 (Metallurgizdat, Sverdlovsk, 1956).

  2. E. A. Turov and Yu. P. Irkhin, Fiz. Met. Metalloved. 3, 15 (1956).

    Google Scholar 

  3. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Sov. Phys. JETP 8, 157 (1958).

    Google Scholar 

  4. C. Kittel, Phys. Rev. 110, 835 (1958).

    ADS  MathSciNet  Google Scholar 

  5. A. I. Akhiezer, V. G. Bar’yakhtar, and M. I. Kaganov, Sov. Phys. Usp. 3, 567 (1960).

    Article  ADS  Google Scholar 

  6. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin Waves (Nauka, Moscow, 1967; North-Holland, Amsterdam, 1968).

  7. V. V. Lemanov, in Physics of Magnetic Insulators, Collection of Articles, Ed. by G. A. Smolenskii (Nauka, Leningrad, 1975), p. 85 [in Russian].

    Google Scholar 

  8. O. Yu. Belyaeva, L. K. Zarembo, and S. N. Karpachev, Sov. Phys. Usp. 35, 106 (1992).

    Article  ADS  Google Scholar 

  9. V. G. Bar’yakhtar, A. G. Danilevich, and V. A. L’vov, Phys. Rev. B 84, 134304 (2011).

    Article  ADS  Google Scholar 

  10. V. A. Ignatchenko and L. I. Deich, Phys. Rev. B 50, 16364 (1994).

    Article  ADS  Google Scholar 

  11. L. I. Deich and V. A. Ignatchenko, J. Exp. Theor. Phys. 80, 478 (1995).

    ADS  Google Scholar 

  12. L. I. Deich and A. A. Lisyansky, Phys. Lett. A 220, 125 (1996).

    Article  ADS  Google Scholar 

  13. V. A. Ignatchenko, M. V. Erementchouk, A. A. Maradudin, and L. I. Deich, Phys. Rev. B 59, 9185 (1999).

    Article  ADS  Google Scholar 

  14. R. C. Bourret, Nuovo Cim. 26, 1 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. A. Ignatchenko and D. S. Polukhin, Solid State Phenom. 190, 51 (2012).

    Article  Google Scholar 

  16. V. A. Ignatchenko and D. S. Polukhin, J. Exp. Theor. Phys. 116, 206 (2013).

    Article  ADS  Google Scholar 

  17. V. A. Ignatchenko and D. S. Polukhin, J. Exp. Theor. Phys. 117, 846 (2013).

    Article  ADS  Google Scholar 

  18. V. A. Ignatchenko and D. S. Polukhin, Solid State Phenom. 215, 105 (2014).

    Article  Google Scholar 

  19. A. B. Migdal, Sov. Phys. JETP 7, 996 (1958).

    Google Scholar 

  20. R. H. Kraichnan, J. Math. Phys. 2, 124 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Bruus and K. Flensberg, Introduction to Many-Body Quantum Theory in Condensed Matter Physics (Orsted Labor., Niels Bohr Inst., Copenhagen, Denmark, 2002).

    Google Scholar 

  22. M. V. Sadovskii, Diagrammatics. Lectures on Selected Problems in Condensed Matter Theory, 2nd ed. (Inst. Elektrofiz. UrO RAN, Ekaterinburg, 2005; World Scientific, Singapore, 2006).

  23. J. Cai, X. L. Lei, and L. M. Xie, Phys. Rev. B 39, 11618 (1989).

    Article  ADS  Google Scholar 

  24. V. N. Kostur and B. Mitrovic, Phys. Rev. B 50, 12774 (1994).

    Article  ADS  Google Scholar 

  25. C. Grimaldi, L. Pietronero, and S. Strässler, Phys. Rev. Lett. 75, 1158 (1995).

    Article  ADS  Google Scholar 

  26. Y. Takada and T. Higuchi, Phys. Rev. B 52, 12720 (1995).

    Article  ADS  Google Scholar 

  27. O. V. Danylenko, O. V. Dolgov, and V. V. Losyakov, Phys. Lett. A 230, 79 (1997).

    Article  ADS  Google Scholar 

  28. G. A. Ummarino and R. S. Gonnelli, Phys. Rev. B 56, R14279 (1997).

    Article  ADS  Google Scholar 

  29. F. Cosenza, L. de Cesare, and M. Fusco Girard, Phys. Rev. B 59, 3349 (1999).

    Article  ADS  Google Scholar 

  30. O. V. Danylenko and O. V. Dolgov, Phys. Rev. B 63, 094506 (2001).

    Article  ADS  Google Scholar 

  31. J. P. Hague and N. d’Ambrumenil, J. Low Temp. Phys. 151, 1149 (2008).

    Article  ADS  Google Scholar 

  32. J. Bauer, J. E. Han, and O. Gunnarsson, Phys. Rev. B 84, 184531 (2011).

    Article  ADS  Google Scholar 

  33. V. A. Ignatchenko and D. S. Polukhin, J. Phys. A 49, 095004 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  34. V. A. Ignatchenko, D. S. Polukhin, and D. S. Tsikalov, J. Magn. Magn. Mater. 440, 83 (2017).

    Article  ADS  Google Scholar 

  35. V. A. Ignatchenko and D. S. Polukhin, J. Exp. Theor. Phys. 125, 91 (2017).

    Article  ADS  Google Scholar 

  36. K. P. Belov, Magnetostriction Phenomena and their Technical Applications (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  37. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Values, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Ignatchenko or D. S. Polukhin.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatchenko, V.A., Polukhin, D.S. Fine Structure of the Crossing Resonance Spectrum of Wavefields in an Inhomogeneous Medium. J. Exp. Theor. Phys. 130, 358–369 (2020). https://doi.org/10.1134/S1063776120010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120010033

Navigation