Skip to main content
Log in

Densification of Crystalline Boron Carbide during Shock-Wave Loading

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Crystalline powder boron carbide samples are subjected to explosive loading by 2-μs shock waves with an amplitude of 38 GPa and shock heating to 700 K and to subsequent conservation. The samples recovered after shock-wave loading are studied by X-ray diffraction, and new effects of shock-wave loading on boron carbide are revealed. The explosive treatment is shown to shift the X-ray diffraction reflections of initial boron carbide toward high angles, which is attributed to an increase in the boron carbide density at the level of atomic volume in the unit cell of boron carbide. The X-ray diffraction reflections are found to broaden, which is interpreted as an increase in the coherent scattering region in the crystalline boron carbide subjected to the explosive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. A. Andrievskii, Russ. Chem. Rev. 81, 549 (2012).

    Article  ADS  Google Scholar 

  2. P. Dera, M. H. Manghnani, A. Hushur, et al., J. Solid State Chem. 215, 85 (2014).

    Article  ADS  Google Scholar 

  3. E. Grady, J. Appl. Phys. 117, 165904 (2015).

    Article  ADS  Google Scholar 

  4. T. Duffy, Tech. Rep. DOE-DUFFY-16242 (Princeton Univ., NJ, 2017). https://www.osti.gov/servlets/purl/1406133. https://doi.org/10.2172/1406133

    Google Scholar 

  5. S. Zhao, B. Kad, B. A. Remington, et al., Proc. Natl. Acad. Sci. U. S. A. 113, 12088 (2016).

    Article  ADS  Google Scholar 

  6. R. S. Kumar, D. Dandekar, A. Leithe-Jasper, et al., Diamond Relat. Mater. 19, 530 (2010).

    Article  ADS  Google Scholar 

  7. A. M. Molodets and A. A. Golyshev, JETP Lett. 108, 409 (2018).

    Article  ADS  Google Scholar 

  8. V. V. Kim, A. A. Golyshev, D. V. Shakhrai, and A. M. Molodets, in Proceedings of the 11th International Conference Zababakhin’s Scientific Readings, Snezhinsk,2012. http://www.vniitf.ru/images/zst/2012/s6/6-24.pdf.

  9. A. M. Molodets, A. A. Golyshev, and D. V. Shakhrai, J. Exp. Theor. Phys. 124, 469 (2017).

    Article  ADS  Google Scholar 

  10. A. A. Golyshev, V. V. Kim, A. N. Emel’yanov, et al., Appl. Mech. Tech. Phys. 56, 618 (2015).

    Article  ADS  Google Scholar 

  11. A. M. Molodets, Phys. Solid State 57, 1045 (2015).

    Article  Google Scholar 

  12. D. Gosset and M. Colin, J. Nucl. Mater. 183, 161 (1991).

    Article  ADS  Google Scholar 

  13. S. V. Konovalikhin and V. I. Ponomarev, Russ. J. Inorg. Chem. 54, 197 (2009).

    Article  Google Scholar 

  14. S. V. Konovalikhin, V. I. Ponomarev, G. V. Shilov, and I. D. Kovalev, J. Struct. Chem. 58, 1648 (2017).

    Article  Google Scholar 

  15. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X‑Ray and Electron Diffraction Analysis (Metallurgiya, Moscow, 1970), p. 80 [in Russian].

    Google Scholar 

  16. V. A. Mukhanov, P. S. Sokolov, and V. L. Solozhenko, J. Superhard Mater. 34, 211 (2012).

    Article  Google Scholar 

  17. S. V. Konovalikhin and V. I. Ponomarev, Russ. J. Phys. Chem. A 84, 1445 (2010).

    Article  Google Scholar 

  18. H. Werheit, Russ. J. Phys. Chem. A 90, 1501 (2016).

    Article  Google Scholar 

  19. Yu. D. Yagodkin and S. V. Dobatkin, Zavod. Lab. Diagn. Mater. 73, 38 (2007).

    Google Scholar 

Download references

Funding

This work was supported by the fundamental study program Condensed Matter and Plasma at High Energy Densities of the Presidium of Russian Academy of Sciences using the equipment of unique scientific setup Experimental Explosion Stand, as well as the Analytic Collective Usage Center at the Institute of Problems of Chemical Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Molodets.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molodets, A.M., Golyshev, A.A. & Shilov, G.V. Densification of Crystalline Boron Carbide during Shock-Wave Loading. J. Exp. Theor. Phys. 130, 431–438 (2020). https://doi.org/10.1134/S1063776120020132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120020132

Navigation