Skip to main content
Log in

Simulation of ab Initio Dynamics of the Formation of Metastable Conducting Solid Hydrogen

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Density-functional theory (DFT) is applied to the calculation of the equation of state, the pair correlation function (PCF), and the static electrical conductivity of solid hydrogen near the transition point to the conducting state. It is found that the pressure versus density exhibits hysteresis at temperature of 100 K under compression followed by expansion. The overlapping of the isotherm branches of molecular and nonmolecular phases of solid hydrogen is observed, which corresponds to the domain of existence of metastable states. The value of this region is 275 GPa. Under compression, a transition of solid molecular hydrogen from monoclinic structure with C2/c symmetry to a conducting nonmolecular state with orthorhombic C2221 structure through an intermediate conducting molecular phase with orthorhombic Cmca-4 structure is observed. Under expansion, a transition of the conducting nonmolecular state with C2221 symmetry of the unit cell to a conducting molecular phase with Cmca-4 symmetry occurs through an intermediate nonmolecular phase with P21/c symmetry. It is shown that the conducting nonmolecular crystalline hydrogen with P21/c symmetry persists down to a pressure of 350 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

    Article  ADS  Google Scholar 

  2. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

    Article  ADS  Google Scholar 

  3. Yu. Kagan and E. G. Brovman, Sov. Phys. Usp. 14, 809 (1972).

    Article  ADS  Google Scholar 

  4. E. G. Brovman, Yu. Kagan, and A. Kholas, Sov. Phys. JETP 34, 1300 (1971).

    ADS  Google Scholar 

  5. E. G. Brovman, Yu. Kagan, and A. Kholas, Sov. Phys. JETP 35, 783 (1972).

    ADS  Google Scholar 

  6. Yu. Kagan, V. V. Pushkarev, and A. Kholas, Sov. Phys. JETP 46, 511 (1977).

    ADS  Google Scholar 

  7. V. P. Trubitsyn, Sov. Phys. Solid State 7, 2708 (1966).

    Google Scholar 

  8. V. P. Trubitsyn, Sov. Phys. Solid State 8, 688 (1966).

    Google Scholar 

  9. R. Dias and I. F. Silvera, Science (Washington, DC, U. S.) 355, 715 (2017).

    Article  ADS  Google Scholar 

  10. M. I. Eremets and I. A. Troyan, Nat. Mater. 10, 927 (2011).

    Article  ADS  Google Scholar 

  11. J. M. McMahon and D. M. Ceperley, Phys. Rev. Lett. 106, 165302 (2011).

    Article  ADS  Google Scholar 

  12. S. Azadi, B. Monserrat, W. M. C. Foulkes, and R. J. Needs, Phys. Rev. Lett. 112, 165501 (2014).

    Article  ADS  Google Scholar 

  13. N. N. Degtyarenko and E. A. Mazur, JETP Lett. 104, 319 (2016).

    Article  ADS  Google Scholar 

  14. N. A. Kudryashov, A. A. Kutukov, and E. A. Mazur, JETP Lett. 104, 460 (2016).

    Article  ADS  Google Scholar 

  15. N. N. Degtyarenko, E. A. Mazur, and K. S. Grishakov, JETP Lett. 105, 644 (2017).

    Article  ADS  Google Scholar 

  16. G. Rillo, M. A. Morales, D. M. Ceperley, and C. Pierleoni, J. Chem. Phys. 148, 102314 (2018).

    Article  ADS  Google Scholar 

  17. C. J. Pickard and R. J. Needs, Nat. Phys. 3, 473 (2007).

    Article  Google Scholar 

  18. G. E. Norman, I. M. Saitov, and R. A. Sartan, Dokl. Phys. 63, 313 (2018).

    Article  ADS  Google Scholar 

  19. G. E. Norman and I. M. Saitov, Dokl. Phys. 64, 145 (2019).

    Article  ADS  Google Scholar 

  20. A. F. Goncharov, J. S. Tse, H. Wang, J. Yang, V. V. Struzhkin, R. T. Howie, and E. Gregoryanz, Phys. Rev. B 87, 024101 (2013).

    Article  ADS  Google Scholar 

  21. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  22. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  23. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  24. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  25. S. Nose, J. Chem. Phys. 81, 511 (1984).

    Article  ADS  Google Scholar 

  26. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  ADS  Google Scholar 

  27. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  ADS  Google Scholar 

  28. D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  29. H. T. Stokes and D. M. Hatch, J. Appl. Crystallogr. 38, 237 (2005).

    Article  Google Scholar 

  30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  31. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  ADS  Google Scholar 

  32. G. E. Norman, I. M. Saitov, and R. A. Sartan, Contrib. Plasma Phys. (2019). https://doi.org/10.1002/ctpp.201800173

  33. V. V. Brazhkin, S. V. Popova, and R. N. Voloshin, High Press. Res. 15, 267 (1997).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-08-01135 and by the fundamental research program of the Presidium of the Russian Academy of Sciences (coordinator V.E. Fortov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Saitov.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitov, I.M. Simulation of ab Initio Dynamics of the Formation of Metastable Conducting Solid Hydrogen. J. Exp. Theor. Phys. 130, 423–430 (2020). https://doi.org/10.1134/S1063776120010094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120010094

Navigation