Skip to main content
Log in

On a Conjecture of Erdős on Locally Sparse Steiner Triple Systems

  • Original paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A famous theorem of Kirkman says that there exists a Steiner triple system of order n if and only if n ≡ 1,3 mod 6. In 1973, Erdős conjectured that one can find so-called ‘sparse’ Steiner triple systems. Roughly speaking, the aim is to have at most j−3 triples on every set of j points, which would be best possible. (Triple systems with this sparseness property are also referred to as having high girth.) We prove this conjecture asymptotically by analysing a natural generalization of the triangle removal process. Our result also solves a problem posed by Lefmann, Phelps and Rödl as well as Ellis and Linial in a strong form, and answers a question of Krivelevich, Kwan, Loh and Sudakov. Moreover, we pose a conjecture which would generalize the Erdős conjecture to Steiner systems with arbitrary parameters and provide some evidence for this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Alon and J. H. Spencer: The probabilistic method, 3rd ed., Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley & Sons, 2008.

  2. P. Bennett and T. Bohman: A note on the random greedy independent set algorithm, Random Structures Algorithms49 (2016), 479–502.

    Article  MathSciNet  Google Scholar 

  3. T. Bohman, A. Frieze and E. Lubetzky: Random triangle removal, Adv. Math.280 (2015), 379–438.

    Article  MathSciNet  Google Scholar 

  4. T. Bohman and P. Keevash: The early evolution of the H-free process, Invent. Math.181 (2010), 291–336.

    Article  MathSciNet  Google Scholar 

  5. T. Bohman and L. Warnke: Large girth approximate Steiner triple systems, J. Lond. Math. Soc.100 (2019), 895–913.

    Article  MathSciNet  Google Scholar 

  6. A. E. Brouwer: Steiner triple systems without forbidden subconfigurations, Mathematisch Centrum Amsterdam, Tech. Report ZW 104/77, 1977.

  7. D. Ellis and N. Linial: On regular hypergraphs of high girth, Electron. J. Combin.21 (2014), Art. 1.54.

  8. P. Erdős: Problems and results in combinatorial analysis, in: Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Accad. Naz. Lincei, 1976, 3–17.

  9. P. Erdős: Problems and results in combinatorial analysis, Creation in Math.9 (1976).

  10. A. D. Forbes, M. J. Grannell and T. S. Griggs: On 6-sparse Steiner triple systems, J. Combin. Theory Ser. A114 (2007), 235–252.

    Article  MathSciNet  Google Scholar 

  11. D. A. Freedman: On tail probabilities for martingales, Ann. Probab.3 (1975), 100–118.

    Article  MathSciNet  Google Scholar 

  12. Z. Füredi and M. Ruszinkó: Uniform hypergraphs containing no grids, Adv. Math.240 (2013), 302–324.

    Article  MathSciNet  Google Scholar 

  13. S. Glock, D. Kühn, A. Lo and D. Osthus: The existence of designs via iterative absorption: hypergraph F-designs for arbitrary F, Memoirs Amer. Math. Soc. (to appear)

  14. D. A. Grable: On random greedy triangle packing, Electron. J. Combin.4 (1997), Art. 11.

  15. M. J. Grannell, T. S. Griggs and C. A. Whitehead: The resolution of the anti-Pasch conjecture, J. Combin. Des.8 (2000), 300–309.

    Article  MathSciNet  Google Scholar 

  16. T. S. Griggs, J. Murphy and J. S. Phelan: Anti-Pasch Steiner triple systems, J. Comb. Inf. Syst. Sci.15 (1990), 79–84.

    MathSciNet  MATH  Google Scholar 

  17. P. Keevash: The existence of designs, arXiv:1401.3665 (2014).

  18. P. Keevash: Counting designs, J. Eur. Math. Soc.20 (2018), 903–927.

    Article  MathSciNet  Google Scholar 

  19. T. P. Kirkman: On a problem in combinatorics, Cambridge Dublin Math. J.2 (1847), 191–204.

    Google Scholar 

  20. M. Krivelevich, M. Kwan, P.-S. Loh and B. Sudakov: The random k-matching-free process, Random Structures Algorithms53 (2018), 692–716.

    Article  MathSciNet  Google Scholar 

  21. D. Kühn, D. Osthus and A. Taylor: On the random greedy F-free hypergraph process, SIAM J. Discrete Math.30 (2016), 1343–1350.

    Article  MathSciNet  Google Scholar 

  22. H. Lefmann, K. T. Phelps and V. Rödl: Extremal problems for triple systems, J. Combin. Des.1 (1993), 379–394.

    Article  MathSciNet  Google Scholar 

  23. A. C. H. Ling, C. J. Colbourn, M. J. Grannell and T. S. Griggs: Construction techniques for anti-Pasch Steiner triple systems, J. Lond. Math. Soc.61 (2000), 641–657.

    Article  MathSciNet  Google Scholar 

  24. N. Linial and Z. Luria: An upper bound on the number of Steiner triple systems, Random Structures Algorithms43 (2013), 399–406.

    Article  MathSciNet  Google Scholar 

  25. D. Osthus and A. Taraz: Random maximal H-free graphs, Random Structures Algorithms18 (2001), 61–82.

    Article  MathSciNet  Google Scholar 

  26. N. Pippenger and J. Spencer: Asymptotic behaviour of the chromatic index for hypergraphs, J. Combin. Theory Ser. A51 (1989), 24–42.

    Article  MathSciNet  Google Scholar 

  27. V. Rödl and L. Thoma: Asymptotic packing and the random greedy algorithm, Random Structures Algorithms8 (1996), 161–177.

    Article  MathSciNet  Google Scholar 

  28. I. Z. Ruzsa and E. Szemerédi: Triple systems with no six points carrying three triangles, Combinatorics II, Colloq. Math. Soc. János Bolyai 18, North-Holland, 1978, 939–945.

    MathSciNet  MATH  Google Scholar 

  29. J. Spencer: Asymptotic packing via a branching process, Random Structures Algorithms7 (1995), 167–172.

    Article  MathSciNet  Google Scholar 

  30. L. Warnke: The C-free process, Random Structures Algorithms44 (2014), 490–526.

    Article  MathSciNet  Google Scholar 

  31. L. Warnke: When does the K4-free process stop?, Random Structures Algorithms44 (2014), 355–397.

    Article  MathSciNet  Google Scholar 

  32. A. Wolfe: 5-sparse Steiner triple systems of order n exist for almost all admissible n, Electron. J. Combin.12 (2005), Art. 68.

Download references

Acknowledgement

We are grateful to Tom Bohman and Lutz Warnke for pointing out a minor oversight in the calculation of Egain in an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deryk Osthus.

Additional information

The research leading to these results was partially supported by the EPSRC, grant nos. EP/N019504/1 (D. Kühn) and EP/P002420/1 (A. Lo), by the Royal Society and the Wolfson Foundation (D. Kühn) as well as by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreement no. 306349 (S. Glock and D. Osthus).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glock, S., Kühn, D., Lo, A. et al. On a Conjecture of Erdős on Locally Sparse Steiner Triple Systems. Combinatorica 40, 363–403 (2020). https://doi.org/10.1007/s00493-019-4084-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-019-4084-2

Mathematics Subject Classification (2010)

Navigation