Skip to main content
Log in

Analytical results for one-electron Rydberg quasimolecules in a high-frequency laser field

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The detailed description of electron terms in the field of two stationary Coulomb centers of charges Z and Z′ separated by a distance R is one of the most fundamental problems in quantum mechanics. When the charges Z and Z′ approach each other and share the only one electron that they have, they form a quasimolecule. Such quasimolecules are encountered in various kinds of plasmas and play an important role in theoretical and experimental studies of charge exchange. When the electron is in a highly-excited state, it is a one-electron Rydberg quasimolecule (OERQ). There are extensive analytical studies of the OERQ by the methods of classical mechanics (which are appropriate for Rydberg states). In one of our previous papers we studied the OERQ subjected to a laser field in the situation where the laser frequency was much smaller than the highest frequency of the unperturbed system. In the present paper we consider the situation where the OERQ is subjected to a laser field whose frequency is much greater than the highest frequency of the unperturbed system. For obtaining analytical results we use a generalization of the method of effective potentials. We show that as the amplitude of the laser field increases, in the case of the linearly-polarized laser field, the structure of the energy terms becomes more complex. Moreover the number of the energy terms increases in this case. We also calculated analytically the shift of the radiation frequency of OERQ caused by the laser field. As the amplitude of the laser field increases, so does the shift. The radiation frequency is shifted to the blue in the case of the linearly-polarized laser field, and to the red in the case of the circularly-polarized laser field. For a known amplitude of the laser field, by measuring the relative shift of the radiation frequency it should be possible to determine experimentally the distance of the orbital plane of the electron from the nucleus of the smaller nuclear charge.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Von Neumann, E. Wigner, Phys. Z. 30, 467 (1929)

    Google Scholar 

  2. S.S. Gershtein, V.D. Krivchenkov, Sov. Phys. JETP 13, 1044 (1961)

    Google Scholar 

  3. L.I. Ponomarev, T.P. Puzynina, Sov. Phys. JETP 25, 846 (1967)

    ADS  Google Scholar 

  4. J.D. Power, Philos. Trans. R. Soc. London A274, 663 (1973)

    ADS  Google Scholar 

  5. I.V. Komarov, L.I. Ponomarev, S.Y. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976) [in Russian]

  6. H.-J. St. Böddeker, E. Kunze, Oks, Phys. Rev. Lett. 75, 4740 (1995)

    Article  ADS  Google Scholar 

  7. E. Oks, E. Leboucher-Dalimier, Phys. Rev. E 62, R3067 (2000)

    Article  ADS  Google Scholar 

  8. E. Oks, E. Leboucher-Dalimier, J. Phys. B 33, 3795 (2000)

    Article  ADS  Google Scholar 

  9. E. Leboucher-Dalimier, E. Oks, E. Dufour, P. Sauvan, P. Angelo, R. Schott, A. Poquerusse, Phys. Rev. E 64, 065401 (2001)

    Article  ADS  Google Scholar 

  10. E. Leboucher-Dalimier, E. Oks, E. Dufour, P. Angelo, P. Sauvan, R. Schott, A. Poquerusse, Eur. Phys. J. D 20, 269 (2002)

    Article  ADS  Google Scholar 

  11. E. Dalimier, E. Oks, O. Renner, R. Schott, J. Phys. B 40, 909 (2007)

    Article  ADS  Google Scholar 

  12. E. Oks, Phys. Rev. Lett. 85, 2084 (2000)

    Article  ADS  Google Scholar 

  13. E. Oks, J. Phys. B: Atom. Mol. Opt. Phys. 33, 3319 (2000)

    Article  ADS  Google Scholar 

  14. E. Oks, Phys. Rev. E 63, 057401 (2001)

    Article  ADS  Google Scholar 

  15. M.R. Flannery, E. Oks, Phys. Rev. A 73, 013405 (2006)

    Article  ADS  Google Scholar 

  16. N. Kryukov, E. Oks, Int. Rev. At. Mol. Phys. 2, 57 (2011)

    Google Scholar 

  17. N. Kryukov, E. Oks, Can. J. Phys. 90, 647 (2012)

    Article  ADS  Google Scholar 

  18. N. Kryukov, E. Oks, Int. Rev. At. Mol. Phys. 3, 113 (2012)

    Google Scholar 

  19. N. Kryukov, E. Oks, J. Phys. B: At. Mol. Opt. Phys. 46, 245701 (2013)

    Article  ADS  Google Scholar 

  20. N. Kryukov, E. Oks, Eur. Phys. J. D 68, 171 (2014)

    Article  ADS  Google Scholar 

  21. N. Kryukov, E. Oks, Int. Rev. At. Mol. Phys. 4, 121 (2013)

    Google Scholar 

  22. E. Oks, Breaking Paradigms in Atomic and Molecular Physics (World Scientific, Singapore, 2015)

  23. B.B. Nadezhdin, in Radiatsionnye i Relativistskie Effekty v Atomakh i Ionakh (Radiative and Relativistic Effects in Atoms and Ions) (Scientific Council of the USSR Academy of Sciences on Spectroscopy, Moscow, 1986), p. 222 [in Russian]

  24. E. Oks, Analytical Advances in Quantum and Celestial Mechanics: Separating Rapid and Slow Subsystems (IOP Publishing, Bristol, UK, 2019)

  25. P.L. Kapitza, Sov. Phys. JETP 21, 588 (1951)

    Google Scholar 

  26. P.L. Kapitza, Usp. Fiz. Nauk 44, 7 (1951)

    Article  ADS  Google Scholar 

  27. A.P. Mishra, T. Nandi, B.N. Jagatap, J. Quant. Spectrosc. Rad. Trans. 120, 114 (2013)

    Article  ADS  Google Scholar 

  28. M.R. Flannery, E. Oks, Eur. Phys. J. D 47, 27 (2008)

    Article  ADS  Google Scholar 

  29. G. Nogues, A. Lupascu, A. Emmert, M. Brune, J.-M. Raimond, S. Haroche, in Atom Chips, edited by J. Reichel, V. Vuletic(Wiley-VCH, Weinheim, Germany, 2011), Ch. 10, Sect. 10.3.3

  30. J.N. Tan, S.M. Brewer, N.D. Guise, Phys. Scr. T144, 014009 (2011)

    Article  ADS  Google Scholar 

  31. N. Kryukov, E. Oks, Int. Rev. At. Mol. Phys. 3, 17 (2012)

    Google Scholar 

  32. J.S. Dehesa, S. Lopez-Rosa, A. Martinez-Finkelshtein, R.J. Janez, Int. J. Quantum Chem. 110, 1529 (2010)

    Google Scholar 

  33. T. Nandi, J. Phys. B: At. Mol. Opt. Phys. 42, 125201 (2009)

    Article  ADS  Google Scholar 

  34. U.D. Jentschura, P.J. Mohr, J.N. Tan, B.J. Wundt, Phys. Rev. Lett. 100, 160404 (2008)

    Article  ADS  Google Scholar 

  35. A.V. Shytov, M.I. Katsnelson, L.S. Levitov, Phys. Rev. Lett. 99, 246802 (2007)

    Article  ADS  Google Scholar 

  36. M. Devoret, S. Girvin, R. Schoelkopf, Ann. Phys. 16, 767 (2007)

    Article  Google Scholar 

  37. E. Oks, Eur. Phys. J. D 28, 171 (2004)

    Article  ADS  Google Scholar 

  38. L. Holmlid, J. Phys.: Condens. Matter 14, 13469 (2002)

    ADS  Google Scholar 

  39. S.K. Dutta, D. Feldbaum, A. Walz-Flannigan, J.R. Guest, G. Raithel, Phys. Rev. Lett. 86, 3993 (2001)

    Article  ADS  Google Scholar 

  40. H. Carlsen, O. Goscinski, Phys. Rev. A 59, 1063 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Oks.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryukov, N., Oks, E. Analytical results for one-electron Rydberg quasimolecules in a high-frequency laser field. Eur. Phys. J. D 74, 82 (2020). https://doi.org/10.1140/epjd/e2020-100414-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100414-8

Keywords

Navigation