Skip to main content
Log in

Strong enhancement and inhibition of the interatomic van der Waals interaction inside a cylindrical waveguide

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We consider the van der Waals interaction between two ground-state atoms, placed inside a cylindrical waveguide. It is shown that the interaction can be enhanced or suppressed by several orders of magnitudes. Even though the effect is most spectacular for an ideal perfectly reflecting wall, it survives when realistic properties of the wall materials are taken into account. Different types of the waveguide wall, including perfectly reflecting wall, walls made of gold and silicon, and Bragg-distributed wall are compared. It is shown in particular that the van der Waals interaction is inhibited by material absorption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. London, Z. Phys. 63, 245 (1930)

    Article  ADS  Google Scholar 

  2. F. London, Z. Phys. Chem. Abt. B 11, 222 (1930)

    Google Scholar 

  3. H.B.G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948)

    Article  ADS  Google Scholar 

  4. V.A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, Cambridge, 2010)

  5. L. Gomberoff, R.R. McLone, E.A. Power, J. Chem. Phys. 44, 4148 (1966)

    Article  ADS  Google Scholar 

  6. E.A. Power, T. Thirunamachandran, Phys. Rev. A 51, 3660 (1995)

    Article  ADS  Google Scholar 

  7. Y. Sherkunov, Phys. Rev. A 72, 052703 (2005)

    Article  ADS  Google Scholar 

  8. L. Rizzuto, R. Passante, F. Persico, Phys. Rev. A 70, 012107 (2004)

    Article  ADS  Google Scholar 

  9. G. Feinberg, J. Sucher, J. Chem. Phys. 48, 3333 (1968)

    Article  ADS  Google Scholar 

  10. C. Farina, F.C. Santos, A.C. Tort, J. Phys. A 35, 2477 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. B.W. Ninham, J. Daicic, Phys. Rev. A 57, 1870 (1998)

    Article  ADS  Google Scholar 

  12. A.D. McLachlan, Mol. Phys. 7, 381 (1964)

    Article  ADS  Google Scholar 

  13. S.Y. Buhmann, Dispersion Forces I and II (Springer, Berlin, 2012)

  14. L.M. Woods, D.A.R. Dalvit, A. Tkatchenko, P. Rodriguez-Lopez, A.W. Rodriguez, R. Podgornik, Rev. Mod. Phys. 88, 045003 (2016)

    Article  ADS  Google Scholar 

  15. M. Boström, J.J. Longdell, B.W. Ninham, Phys. Rev. A 64, 062702 (2001)

    Article  ADS  Google Scholar 

  16. M. Marcovitch, H. Diamant, Phys. Rev. Lett. 95, 223203 (2005)

    Article  ADS  Google Scholar 

  17. H. Safari, S.Y. Buhmann, D.-G. Welsch, H.T. Dung, Phys. Rev. A 74, 042101 (2006)

    Article  ADS  Google Scholar 

  18. H. Safari, D.-G. Welsch, H.T. Dung, S.Y. Buhmann, Phys. Rev. A 77, 053824 (2006)

    Article  ADS  Google Scholar 

  19. H. Safari, D.-G. Welsch, S.Y. Buhmann, S. Scheel, Phys. Rev. A 78, 062901 (2008)

    Article  ADS  Google Scholar 

  20. R. de Melo e Souza, W.J.M. Kort-Kamp, F.S.S. Rosa, C. Farina, Phys. Rev. A 91, 052708 (2015)

    Article  ADS  Google Scholar 

  21. E. Shahmoon, I. Mazets, G. Kurizki, Proc. Natl Acad. Sci. USA 111, 10485 (2014)

    Article  ADS  Google Scholar 

  22. H.R. Haakh, S. Scheel, Phys. Rev. A 91, 052707 (2015)

    Article  ADS  Google Scholar 

  23. H.T. Dung, J. Phys. B: At. Mol. Opt. Phys. 49, 165502 (2016)

    Article  ADS  Google Scholar 

  24. F.L. Kien, L. Ruks, T. Busch, Appl. Phys. B 125, 205 (2019)

    Article  ADS  Google Scholar 

  25. T. Gruner, D.-G. Welsch, Phys. Rev. A 53, 1818 (1996)

    Article  ADS  Google Scholar 

  26. L.-W. Li, M.-S. Leong, T.-S. Yeo, P.-S. Kooi, J. Electromagn. Waves Appl. 14, 961 (2000)

    Article  Google Scholar 

  27. I. Pirozhenko, A. Lambrecht, Phys. Rev. A 77, 013811 (2008)

    Article  ADS  Google Scholar 

  28. H.T. Dung, L. Knöll, D.-G. Welsch, Phys. Rev. A 67, 021801(R) (2003)

    Article  ADS  Google Scholar 

  29. N.D. Chinh, T.M. Hien, J. Phys. B: At. Mol. Opt. Phys. 52, 165401 (2019)

    Article  ADS  Google Scholar 

  30. C.T. Tai, Dyadic Green Functions in Electromagnetic Theory (IEEE Press, New York, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dung Chinh.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinh, N.D. Strong enhancement and inhibition of the interatomic van der Waals interaction inside a cylindrical waveguide. Eur. Phys. J. D 74, 87 (2020). https://doi.org/10.1140/epjd/e2020-10024-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10024-9

Keywords

Navigation