Skip to main content

Advertisement

Log in

Predicting the distribution range of a recently described, habitat specialist bee

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The Wallacean shortfall—lack of adequate knowledge of a species’ distribution in the geographic space—hinders practical actions towards species conservation, and such severe data deficit is ubiquitous when dealing with insect species. Considering the effects of human activities on Earth, especially in the last 50 years, proper delimitation of species distributions is of utmost importance for their conservation, but this is challenging when occurrence data for a species are limited. Here, we present suitable areas of occurrence for a recently-described specialist bee in the Southeastern United States (Colletes ultravalidus Hall and Ascher), modeled with presence-only methods that are robust to small number of occurrence points. Incorporation of new citizen science data points derived from images submitted online for identification enhanced the species distribution model which, in turn, validated the new sites as suitable for the species. Consideration of absence points, i.e. sites where the species was not recorded despite intensive surveys for Colletes and other specialist bees, resulted in more precise predications that can inform future searches for this bee. This study exemplifies how citizen-science projects may contribute to improving understanding of species biogeographic ranges and thus to overcoming the Wallacean shortfall. The need for critical evaluation prior to and after modeling of the occurrences obtained by non-specialists are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiello-Lammens ME, Boria RA, Radosavljevic A et al (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545

    Google Scholar 

  • Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918. https://doi.org/10.1016/j.cub.2009.03.071

    Article  CAS  PubMed  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Google Scholar 

  • Almeida MC, Côrtes LG, De Marco P Jr (2010) New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa. Insect Conserv Divers 3:252–256. https://doi.org/10.1111/j.1752-4598.2010.00096.x

    Article  Google Scholar 

  • Austen GE, Bindemann M, Griffiths RA, Roberts DL (2016) Species identification by experts and non-experts: comparing images from field guides. Sci Rep 6:33634. https://doi.org/10.1038/srep33634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    CAS  PubMed  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Modell 186:251–270. https://doi.org/10.1016/j.ecolmodel.2005.01.030

    Article  Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615

    CAS  PubMed  Google Scholar 

  • Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Google Scholar 

  • Ceríaco LMP, Gutiérrez EE, Dubois A (2016) Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences. Zootaxa 4196:435. https://doi.org/10.11646/zootaxa.4196.3.9

    Article  Google Scholar 

  • Costanza R, D’Arge R, de Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Google Scholar 

  • De Giovanni R, Bernacci LC, de Siqueira MF, Rocha FS (2012) The real task of selecting records for ecological niche modelling. Nat Conserv 10:139–144

    Google Scholar 

  • de Oliveira G, Rangel TF, Lima-Ribeiro MS et al (2014) Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography 37:637–647

    Google Scholar 

  • De Siqueira MF, Durigan G, De Marco P Jr, Peterson AT (2009) Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. J Nat Conserv 17:25–32. https://doi.org/10.1016/j.jnc.2008.11.001

    Article  Google Scholar 

  • Deyrup MA, Deurup LD (2011) Colletes francesae, a new species of colletid bee (Hymenoptera: Colletidae) associated with Sideroxylon tenax (Sapotaceae) in Florida scrub habitat. Florida Entomol 94:897–901

    Google Scholar 

  • Deyrup M, Edirisinghe J, Norden B (2002) The diversity and floral hosts of bees at the Archbold Biological Station, Florida (Hymenoptera: Apoidea). Insect Mundi 16:87–120

    Google Scholar 

  • Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172. https://doi.org/10.1146/annurev-ecolsys-102209-144636

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TFLVB et al (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Google Scholar 

  • Diniz-Filho JAF, De Marco P Jr, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179

    Google Scholar 

  • Duan R-Y, Kong X-Q, Huang M-Y et al (2014) The predictive performance and stability of six species distribution models. PLoS ONE 9:e112764

    PubMed  PubMed Central  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Evangelista PH, Kumar S, Stohlgren TJ et al (2008) Modelling invasion for a habitat generalist and a specialist plant species. Divers Distrib 14:808–817

    Google Scholar 

  • Farnsworth EJ, Chu M, Kress WJ et al (2013) Next-generation field guides. Bioscience 63:891–899. https://doi.org/10.1525/bio.2013.63.11.8

    Article  Google Scholar 

  • Gallien L, Douzet R, Pratte S et al (2012) Invasive species distribution models: how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136. https://doi.org/10.1111/j.1466-8238.2012.00768.x

    Article  Google Scholar 

  • Giannini TC, Chapman DS, Saraiva AM et al (2013) Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants. Ecography 36:649–656

    Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. https://doi.org/10.1111/ele.12189

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo QH, Kelly M, Graham CH (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecol Modell 182:75–90

    Google Scholar 

  • Gutiérrez EE, Boria RA, Anderson RP (2014) Can biotic interactions cause allopatry? Niche models, competition, and distributions of South American mouse opossums. Ecography 37:741–753. https://doi.org/10.1111/ecog.00620

    Article  Google Scholar 

  • Hall HG, Ascher JS (2010) Surveys of bees (Hymenoptera: Apoidea: Anthophila) in natural areas of Alachua County in north-central Florida. Fla Entomol 93:609–629. https://doi.org/10.1653/024.093.0419

    Article  Google Scholar 

  • Hall HG, Ascher JS (2011) Surveys of wild bees (Hymenoptera: Apoidea: Anthophila) in organic farms of Alachua County in north-central Florida. Fla Entomol 94:539–552

    Google Scholar 

  • Hall HG, Ascher JS (2014) The distinctive bee fauna (Hymenoptera: Apoidea: Anthophila) of sandhill habitat at the Ordway-Swisher Biological Station in north-central Florida. J Kansas Entomol Soc 87:1–21

    Google Scholar 

  • Hall HG, Avila L (2016) Megachile sculpturalis, the Giant Resin Bee, overcomes the blossom structure of Sunn Hemp (Crotalaria juncea) that impedes pollination. J Melittol. https://doi.org/10.17161/jom.v0i65.5887

    Article  Google Scholar 

  • Hall HG, Almquist DT, Ascher JS (2016) A new species of Colletes (Hymenoptera: Apoidea: Colletidae) from northern Florida and Georgia, with notes on the Colletes of those states. J Melittol. https://doi.org/10.17161/jom.v0i58.4993

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Hochachka WM, Fink D, Hutchinson RA et al (2012) Data-intensive science applied to broad-scale citizen science. Trends Ecol Evol 27:130–137. https://doi.org/10.1016/j.tree.2011.11.006

    Article  PubMed  Google Scholar 

  • Hortal J, Lobo J, Jiménez-Valverde A (2012) Basic questions in biogeography and the (lack of) simplicity of species distributions: putting species distribution models in the right place. Nat Conserv 10:108–118

    Google Scholar 

  • Hortal J, de Bello F, Diniz-Filho JAF et al (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400

    Article  Google Scholar 

  • Jarnevich CS, Stohlgren TJ, Kumar S et al (2015) Caveats for correlative species distribution modeling. Ecol Inform 29:6–15

    Google Scholar 

  • Jepson P, Ladle RJ (2015) Nature apps: waiting for the revolution. Ambio 44:827–832. https://doi.org/10.1007/s13280-015-0712-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualism: the conservation of plant–pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Google Scholar 

  • Klein AM, Vaissière BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci 274:303–313

    Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379. https://doi.org/10.1111/ddi.12096

    Article  Google Scholar 

  • Lima-Ribeiro MS, Diniz-Filho JAF (2012) Modelando a distribuição geográfica das espécies no passado: uma abordagem promissora em paleoecologia. Rev Bras Paleontol 15:371–385. https://doi.org/10.4072/rbp.2012.3.12

    Article  Google Scholar 

  • Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Google Scholar 

  • Liu C, White M, Newell G (2011) Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34:232–243

    CAS  Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323

    Google Scholar 

  • Lucky A, Savage AM, Nichols LM et al (2014) Ecologists, educators, and writers collaborate with the public to assess backyard diversity in The School of Ants Project. Ecosphere 5:art78. https://doi.org/10.1890/ES13-00364.1

    Article  Google Scholar 

  • Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Google Scholar 

  • Millenium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: scenarios . Island Press, Washington, DC

    Google Scholar 

  • Muñoz MES, De Giovanni R, de Siqueira MF et al (2011) openModeller: a generic approach to species’ potential distribution modelling. Geoinformatica 15:111–135

    Google Scholar 

  • Newbold T (2010) Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog Phys Geogr 34:3–22

    Google Scholar 

  • Oliveira U, Paglia AP, Brescovit AD et al (2016) The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers Distrib 22:1232–1244. https://doi.org/10.1111/ddi.12489

    Article  Google Scholar 

  • Pape T (2016) Species can be named from photos. Nature 537:307. https://doi.org/10.1038/537307b

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Google Scholar 

  • Peres-Neto PR, Jackson DA, Somers KM (2005) How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal 49:974–997

    Google Scholar 

  • Peterson AT, Soberón J (2012) Species distribution modeling and ecological niche modeling: getting the concepts right. Nat Conserv 10:102–107

    Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Google Scholar 

  • Pyke GH, Ehrlich PR (2010) Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biol Rev 85:247–266

    PubMed  Google Scholar 

  • Raxworthy CJ, Martínez-Meyer E, Horning N et al (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841

    CAS  PubMed  Google Scholar 

  • Reddy S, Dávalos LM (2003) Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30:1719–1727

    Google Scholar 

  • Sastre P, Lobo JM (2009) Taxonomist survey biases and the unveiling of biodiversity patterns. Biol Conserv 142:462–467. https://doi.org/10.1016/j.biocon.2008.11.002

    Article  Google Scholar 

  • Schölkopf B, Platt JC, Shawe-Taylor J et al (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13:1443–1471

    PubMed  Google Scholar 

  • Silva DP, Aguiar AJC, Melo GAR et al (2013) Amazonian species within the Cerrado savanna: new records and potential distribution for Aglae caerulea (Apidae: Euglossini). Apidologie 44:673–683. https://doi.org/10.1007/s13592-013-0216-7

    Article  Google Scholar 

  • Silva DP, Gonzalez VH, Melo GAR et al (2014) Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecol Modell 273:200–209. https://doi.org/10.1016/j.ecolmodel.2013.11.016

    Article  Google Scholar 

  • Silva DP, Aguiar AG, Simião-Ferreira J (2016) Assessing the distribution and conservation status of a long-horned beetle with species distribution models. J Insect Conserv 20:611–620. https://doi.org/10.1007/s10841-016-9892-8

    Article  Google Scholar 

  • Silvertown J (2009) A new dawn for citizen science. Trends Ecol Evol 24:467–471. https://doi.org/10.1016/j.tree.2009.03.017

    Article  PubMed  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x

    Article  PubMed  Google Scholar 

  • Steege H, Pitman NCA, Killeen TJ et al (2015) Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci Adv 1:e1500936. https://doi.org/10.1126/sciadv.1500936

    Article  PubMed  PubMed Central  Google Scholar 

  • Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn 54:45–66

    Google Scholar 

  • Teacher AGF, Griffiths DJ, Hodgson DJ, Inger R (2013) Smartphones in ecology and evolution: a guide for the app-rehensive. Ecol Evol 3:5268–5278. https://doi.org/10.1002/ece3.888

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Google Scholar 

  • Wilson EO (1987) The little things that run the world (the importance and conservation of invertebrates). Conserv Biol 1:344–346. https://doi.org/10.1111/j.1523-1739.1987.tb00055.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the citizens that actively uploaded information on C. ultravalidus to the BugGuide website, as well as all website developers, editors and other contributors to this internet-based initiative. The authors also thank Anya Roopa Gajanur and two anonymous reviewers for suggesting improvements to a previous version of this manuscript. DPS was supported by a productivity grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Proc. Number: 304494/2019-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Silva.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D.P., Hall, H.G. & Ascher, J.S. Predicting the distribution range of a recently described, habitat specialist bee. J Insect Conserv 24, 671–680 (2020). https://doi.org/10.1007/s10841-020-00241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-020-00241-3

Keywords

Navigation