Skip to main content
Log in

Dynamic Atomic Displacements and Athermal Dislocation Glide in Crystals

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A dislocation glide mechanism at low temperatures is proposed. The mechanism is based on the inclusion of dynamic atomic displacements, i.e., those caused by nonadiabatic transitions of atoms in a crystal with a dislocation under action of an external force. The dynamic displacements initiate the instability of a rectilinear dislocation with respect to low-amplitude displacements during atomic vibrations. The instability development leads to the formation of a double kink and the dislocation displacement by one interatomic distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. E. Peierls, Proc. Phys. Soc. London 52, 34 (1940).

    Article  ADS  Google Scholar 

  2. L. Proville, D. Rodney, and M.-C. Marinica, Nat. Mater. 11, 845 (2012).

    Article  ADS  Google Scholar 

  3. S. Narayanan, D. L. McDowell, and T. Zhu, J. Mech. Phys. Solids 65, 54 (2014).

    Article  ADS  Google Scholar 

  4. C. Domain and G. Monnet, Phys. Rev. Lett. 95, 215506 (2005).

    Article  ADS  Google Scholar 

  5. T. H. Blewitt, J. R. Redman, T. A. Sherill, and R. R. Coltman, Phys. Rev. 98, 1555 (1955).

    Google Scholar 

  6. E. T. Wessel, Trans. ASM 49, 149 (1957).

    Google Scholar 

  7. Z. S. Basinski and A. Sleeswyk, Acta Met. 5, 176 (1957).

    Article  Google Scholar 

  8. P. Haasen, Philos. Mag. 3, 384 (1958).

    Article  ADS  Google Scholar 

  9. B. V. Petukhov and V. L. Pokrovskii, Sov. Phys. JETP 36, 336 (1973).

    ADS  Google Scholar 

  10. R. Kapral, J. Phys.: Condens. Matter 27, 073201 (2015).

    ADS  Google Scholar 

  11. L. Landau, Phys. Z. Sow. 2, 46 (1932).

    Google Scholar 

  12. C. Zener, Proc. R. Soc. A 137, 696 (1932).

    ADS  Google Scholar 

  13. V. E. Egorushkin and N. V. Mel’nikova, J. Exp. Theor. Phys. 76, 103 (1993).

    ADS  Google Scholar 

  14. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 854 (1993).

    Article  ADS  Google Scholar 

  15. I. S. Aranson, Rev. Mod. Phys. 74, 99 (2002).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to L.B. Zuev, P.P. Kaminskii, and E.E. Slyadnikov for their interest in our work and useful remarks.

Funding

The work was performed under the government statement of work for ISPMS Project No. III.23.1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Khon.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

APPENDIX

APPENDIX

The numerical solution of Eqs. (3), (4), and (6)(8) was performed by an implicit scheme. We introduced dimensionless variables

$$x = x{\text{/}}{{l}_{\eta }},\quad t = t{\text{/}}{{t}_{\eta }},\quad l = {{l}_{q}}{\text{/}}{{l}_{\eta }},\quad \theta = {{t}_{q}}{\text{/}}{{t}_{\eta }}.$$
(A.1)

The boundary conditions:

$$0 \leqslant x \leqslant X,\quad X = 100,$$
(A.2)
$${{\left. {\frac{{d\eta }}{{dx}}} \right|}_{{x = 0}}} = {{\left. {\frac{{d\eta }}{{dx}}} \right|}_{{x = X}}} = 0,\quad {{\left. {\frac{{dq}}{{dx}}} \right|}_{{x = 0}}} = {{\left. {\frac{{dq}}{{dx}}} \right|}_{{x = X}}} = 0,$$
(A.3)
$$\begin{gathered} q(x = 0,t) = q(x = X,t) = 0, \\ \eta (x = 0,t) = \eta (x = X,t) = 0. \\ \end{gathered} $$
(A.4)

The initial conditions

$$1.\;\;\eta (x,t = 0) = 0,\quad q(x,t = 0) = 0;$$
(A.5)
$$2.\;\;\eta (x,t = 0) = 0,\quad q(x,t = 0) = {{q}_{s}}.$$
(A.6)

The localized perturbations were given in the form

$$\Delta \eta = \Delta {{\eta }_{0}}\exp [ - {{\sigma }_{\eta }}{{(x - {{x}_{0}})}^{2}}],$$
(A.7)
$$\Delta q = \Delta {{q}_{0}}\exp [ - {{\sigma }_{q}}{{(x - {{x}_{0}})}^{2}}],$$
(A.8)

where Δη0 and Δq0 are the amplitudes, x0 is the initial position, ση, σq are the dispersions of the perturbations of variables η and q, respectively.

The stochastic perturbation Δq in each site of the calculation mesh was taken a random value in the range

$$0 \leqslant \Delta q(x) \leqslant 0.001.$$
(A.9)
$$\Delta {{q}_{0}} = 0.01,\quad {{\sigma }_{q}} = 5,\quad {{x}_{0}} = 50.$$
(A.10)
$${{\eta }_{1}} = 0.2,\quad d = 0.3,\quad \alpha = 0.3,\quad c = 0.8.$$
(A.11)
$$\Delta {{\eta }_{0}} = 0.01,\quad {{\sigma }_{\eta }} = 15,\quad {{x}_{0}} = 50.$$
(A.12)
$${{\eta }_{1}} = 0.2,\quad d = 0.3,\quad \alpha = 0.7,\quad c = 0.8.$$
(A.13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khon, Y.A., Zapolsky, H. Dynamic Atomic Displacements and Athermal Dislocation Glide in Crystals. Phys. Solid State 62, 587–591 (2020). https://doi.org/10.1134/S1063783420040137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420040137

Keywords:

Navigation