Skip to main content
Log in

Emission Spectrum and Stability of Two Types of Electron–Hole Liquid in Shallow Si/Si1 – xGexSi Quantum Wells

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Based on calculations within the density functional theory and an analysis of low-temperature photoluminescence spectra, the structure of electron–hole liquid in shallow Si/Si1 – xGexSi (100) quantum wells 5 nm wide with germanium content x = 3–5.5% is studied. It is shown that the energy of quasi-two-dimensional electron–hole liquid localized in quantum wells for this composition range as a function of carrier concentration exhibits two local minima. The position of the deeper (major) minimum depends on the quantum well design and controls properties of quasi-two-dimensional electron–hole liquid at low temperatures. For the series of Si/Si1 – xGexSi quantum wells, modification of properties of electron–hole liquid was experimentally shown, which can be interpreted as a change of the major minimum due to an increases in the germanium concentration in the Si1 – xGex layer. The effect of the multicomponent composition (electrons, light and heavy holes) of the electron–hole liquid on low-temperature photoluminescence spectra of Si/Si1 ‒ xGexSi quantum wells is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. M. Rice, Solid State Phys. 32, 1 (1978).

    Article  Google Scholar 

  2. J. C. Hensel, T. G. Phillips, and G. A. Thomas, Solid State Phys. 32, 88 (1978).

    Google Scholar 

  3. Electron-Hole Droplets in Semiconductors, Vol. 6 of Modern Problems in Condensed Matter Sciences, Ed. by C. D. Jeffries and L. V. Keldysh (North-Holland, Amsterdam, 1983).

    Google Scholar 

  4. N. N. Sibeldin, Phys. Usp. 60, 1147 (2017).

    Article  ADS  Google Scholar 

  5. N. N. Sibeldin, J. Exp. Theor. Phys. 122, 587 (2016).

    Article  ADS  Google Scholar 

  6. T. M. Burbaev, M. N. Gordeev, D. N. Lobanov, A. V. Novikov, M. M. Rzaev, N. N. Sibel’din, M. L. Skorikov, V. A. Tsvetkov, and D. V. Shepel’, JETP Lett. 95, 305 (2010).

    Article  ADS  Google Scholar 

  7. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, A. V. Novikov, E. E. Onishchenko, and M. L. Skorikov, Phys. Rev. B 82, 115313 (2010).

    Article  ADS  Google Scholar 

  8. H. Reinholz, Solid State Commun. 123, 489 (2002).

    Article  ADS  Google Scholar 

  9. D. Snoke, Solid State Commun. 146, 73 (2008).

    Article  ADS  Google Scholar 

  10. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, E. E. Onishchenko, A. A. Pruchkina, D. F. Aminev, M. L. Skorikov, D. N. Lobanov, and A. V. Novikov, J. Exp. Theor. Phys. 117, 912 (2013).

    Article  ADS  Google Scholar 

  11. D. V. Kulakovskii, S. I. Gubarev, and Yu. E. Lozovik, J. Exp. Theor. Phys. 94, 785 (2002).

    Article  ADS  Google Scholar 

  12. J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).

    Article  ADS  Google Scholar 

  13. J. D. Robbins, L. T. Canham, S. J. Barnett, A. D. Pitt, and P. Calcott, J. Appl. Phys. 71, 1407 (1992).

    Article  ADS  Google Scholar 

  14. M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).

    Article  ADS  Google Scholar 

  15. V. S. Bagaev, V. V. Zaitsev, V. S. Krivobok, D. N. Lobanov, S. N. Nikolaev, A. V. Novikov, and E. E. Onishchenko, J. Exp. Theor. Phys. 107, 846 (2008).

    Article  ADS  Google Scholar 

  16. G. Kirczenow and K. S. Singwi, Phys. Rev. B 20, 4171 (1979).

    Article  ADS  Google Scholar 

  17. L. M. Smith and J. P. Wolfe, Phys. Rev. Lett. 57, 2314 (1986).

    Article  ADS  Google Scholar 

  18. A. G. Steele, W. G. McMullan, and M. L. W. Thewalt, Phys. Rev. Lett. 59, 2899 (1987).

    Article  ADS  Google Scholar 

  19. G. D. Mahan, Phys. Rev. 153, 882 (1967).

    Article  ADS  Google Scholar 

  20. A. A. Vasil’chenko, JETP Lett. 108, 185 (2018).

    Article  ADS  Google Scholar 

  21. S. N. Nikolaev, V. S. Krivobok, V. S. Bagaev, E. E. Onishchenko, A. V. Novikov, and M. V. Shaleev, JETP Lett. 104, 163 (2016).

    Article  ADS  Google Scholar 

  22. K. Betzler and R. Conradt, Phys. Rev. Lett. 28, 1562 (1972).

    Article  ADS  Google Scholar 

  23. K. Betzler, T. Weller, and R. Conradt, Phys. Rev. B 6, 1394 (1972).

    Article  ADS  Google Scholar 

  24. T. Steiner, L. Lenchyshyn, M. Thewalt, J.-P. Noël, N. L. Rowell, and D. C. Houghton, Solid State Commun. 89, 429 (1994).

    Article  ADS  Google Scholar 

  25. V. S. Bagaev, E. T. Davletov, V. S. Krivobok, S. N. Nikolaev, A. V. Novikov, E. E. Onishchenko, A. A. Pruch-kina, and M. L. Skorikov, J. Exp. Theor. Phys. 121, 1052 (2015)].

    Article  ADS  Google Scholar 

  26. M. L. W. Thewalt and W. G. M. Mullan, Phys. Rev. B 30, 6232 (1984).

    Article  ADS  Google Scholar 

  27. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, E. E. Onishchenko, M. L. Skorikov, A. V. Novikov, and D. N. Lobanov, JETP Lett. 94, 63 (2011).

    Article  ADS  Google Scholar 

  28. L. V. Keldysh and Yu. V. Kopaev, Sov. Phys. Solid State 6, 2219 (1964).

    Google Scholar 

Download references

Funding

The entire experimental part (section 3–6) was supported by the Russian Science Foundation (project no. 19-79-30086); the theoretical part (sections 1–2) was supported by the Russian Foundation for Basic Research (project no. 19-32-70047 mol_a_mos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Krivobok.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilchenko, A.A., Krivobok, V.S., Nikolaev, S.N. et al. Emission Spectrum and Stability of Two Types of Electron–Hole Liquid in Shallow Si/Si1 – xGexSi Quantum Wells. Phys. Solid State 62, 603–610 (2020). https://doi.org/10.1134/S106378342004023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342004023X

Keywords:

Navigation