Skip to main content
Log in

Random Matrix Theory and the Boson Peak in Two-Dimensional Systems

  • LATTICE DYNAMICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The random matrix theory is used to describe the vibrational properties of two-dimensional disordered systems with a large number of degrees of freedom. It is shown that the correlated Wishart ensemble allows one to take into account the most significant mechanical properties of amorphous solids. In this ensemble, an excess density of vibrational states in comparison with the Debye law is observed, which is expressed in a peak in the reduced density of states g(ω)/ω. It is known as the boson peak, observed in many experiments and numerical calculations concerning two-dimensional and three-dimensional disordered systems. It is shown that the asymptotic behavior of the boson peak in two-dimensional systems has a number of features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B 67, 094203 (2003).

    Article  ADS  Google Scholar 

  2. V. K. Malinovsky and A. P. Sokolov, Solid State Commun. 57, 757 (1986).

    Article  ADS  Google Scholar 

  3. P. Benassi, M. Krisch, C. Masciovecchio, V. Mazzacurati, G. Monaco, G. Ruocco, F. Sette, and R. Verbeni, Phys. Rev. Lett. 77, 3835 (1996).

    Article  ADS  Google Scholar 

  4. A. Wischnewski, U. Buchenau, A. J. Dianoux, W. A. Kamitakahara, and J. L. Zarestky, Philos. Mag. B 77, 579 (1998).

    Article  ADS  Google Scholar 

  5. S. Kojima, Y. Matsuda, M. Kodama, H. Kawaji, and T. Atake, Chin. J. Phys. 49, 414 (2011).

    Google Scholar 

  6. C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E 68, 011306 (2003).

    Article  ADS  Google Scholar 

  7. A. J. Liu and S. R. Nagel, Ann. Rev. Condens. Matter Phys. 1, 347 (2010).

    Article  ADS  Google Scholar 

  8. Y. Nie, H. Tong, J. Liu, M. Zu, and N. Xu, Front. Phys. 12, 126301 (2017).

    Article  ADS  Google Scholar 

  9. L. Zhang, J. Zheng, Y. Wang, L. Zhang, Z. Jin, L. Hong, Y. Wang, and J. Zhang, Nat. Commun. 8, 67 (2017).

    Article  ADS  Google Scholar 

  10. Y. Wang, L. Hong, Y. Wang, W. Schirmacher, and J. Zhang, Phys. Rev. B 98, 174207 (2018).

    Article  ADS  Google Scholar 

  11. W. Steurer, A. Apfolter, M. Koch, W. E. Ernst, B. Holst, E. Sondergard, and J. R. Manson, Phys. Rev. Lett. 99, 035503 (2007).

    Article  ADS  Google Scholar 

  12. S. Kojima and M. Kodama, Phys. B (Amsterdam, Neth.) 263264, 336 (1999).

  13. V. Vitelli, N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel, Phys. Rev. E 81, 021301 (2010).

    Article  ADS  Google Scholar 

  14. R. Speicher and C. Vargas, Random Matrices: Theory Appl. 1, 1150008 (2012).

    MATH  Google Scholar 

  15. J. Harnad, Random Matrices, Random Processes and I-ntegrable Systems (Springer, New York, 2011).

    Book  Google Scholar 

  16. M. Prahofer and H. Spohn, Phys. Rev. Lett. 84, 4882 (2000).

    Article  ADS  Google Scholar 

  17. A. M. Tulino and S. Verdu, Found. Trends Commun. Inf. Theory 1, 1 (2004).

    Article  Google Scholar 

  18. K. E. Wage, J. Acoust. Soc. Am. 138, 1840 (2015).

    Article  ADS  Google Scholar 

  19. A. Edelman, B. Sutton, and Y. Wang, Proc. Symp. A-ppl. Math. 72, 53 (2014).

  20. L. Laloux, P. Cizeau, M. Potters, and J.-P. Bouchaud, Int. J. Theor. Appl. Finance 3, 391 (2000).

    Article  Google Scholar 

  21. H. Meyer and J. C. Angles d’Auriac, Phys. Rev. E 55, 6608 (1997).

    Article  ADS  Google Scholar 

  22. T. Guhr, A. Mueller-Groeling, and H. A. Weidenmueller, Phys. Rep. 299, 189 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Jalan and J. N. Bandyopadhyay, Phys. Rev. E 76, 046107 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  24. K. Rajan and L. F. Abbott, Phys. Rev. Lett. 97, 188104 (2006).

    Article  ADS  Google Scholar 

  25. Ya. M. Beltukov and D. A. Parshin, Phys. Solid State 53, 151 (2011).

    Article  ADS  Google Scholar 

  26. Ya. M. Beltukov and D. A. Parshin, JETP Lett. 104, 552 (2016).

    Article  ADS  Google Scholar 

  27. T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, J. Phys.: Condens. Matter 14, 2167 (2002).

    ADS  Google Scholar 

  28. M. L. Manning and A. J. Liu, Europhys. Lett. 109, 36002 (2015).

    Article  ADS  Google Scholar 

  29. Y. M. Beltukov, JETP Lett. 101, 345 (2015).

    Article  ADS  Google Scholar 

  30. M. Baggioli, R. Milkus, and A. Zaccone, Phys. Rev. E 100, 062131 (2019).

  31. Y. M. Beltukov, V. I. Kozub, and D. A. Parshin, Phys. Rev. B 87, 134203 (2013).

    Article  ADS  Google Scholar 

  32. Z. Burda, A. Gorlich, A. Jarosz, and J. Jurkiewicz, Phys. A (Amsterdam, Neth.) 343, 295 (2004).

  33. Z. Burda, A. Gorlich, J. Jurkiewicz, and B. Waclaw, Eur. Phys. J. B 49, 319 (2006).

    Article  ADS  Google Scholar 

  34. R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, Adv. Comput. Math. 5, 329 (1996).

    Article  MathSciNet  Google Scholar 

  35. D. A. Conyuh and Y. M. Beltukov, J. Phys.: Conf. Ser. 1391, 012118 (2019).

  36. D. A. Conyuh, Y. M. Beltukov, and D. A. Parshin, J. Phys.: Conf. Ser. 929, 012031 (2017).

    Google Scholar 

  37. D. A. Konyukh, Ya. M. Bel’tyukov, and D. A. Parshin, Phys. Solid State 60, 376 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Presidential Council on Grants (project no. MK-3052.2019.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Conyuh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conyuh, D.A., Beltukov, Y.M. Random Matrix Theory and the Boson Peak in Two-Dimensional Systems. Phys. Solid State 62, 689–695 (2020). https://doi.org/10.1134/S1063783420040149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420040149

Keywords:

Navigation