Skip to main content
Log in

Temporal Instability of Acoustic Wave in a Semiconductor Plasma Medium under Momentum Mismatched Condition

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Temporal instability of acoustic wave is investigated in an infinite semiconductor plasma using classical hydrodynamic approach. We consider a homogeneous semiconductor placed in an external magnetic field. Dispersion and gain characteristics of acoustic wave generated in a piezoelectric semiconductor plasma medium with momentum mismatched situation are examined. Numerical analysis of qualitative nature of the four available modes infers that an endurable momentum mismatch modifies the spectra of acoustic wave significantly. Influence of pump field and doping profile on the dispersion and gain characteristics of all possible modes in the medium has been studied and reported. The result infers that the pump field and carrier density play significant roles as control parameters for the favourable propagation and gain characteristics of the acoustic wave in the medium. Presence of momentum mismatch is found to enhance the phase speed of highly unstable modes. These results may pave way to generate squeezed states, useful in optical communication system having operational wavelengths compatible with the spatial scales under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. Sharma and S. Ghosh, Phys. Status Solidi 184, 443 (2001).

    Article  ADS  Google Scholar 

  2. A. Neogi and S. Ghosh, Phys. Status Solidi 152, 69 (1989).

    Article  Google Scholar 

  3. A. Neogi and S. Ghosh, J. Appl. Phys. 69, 61 (1991).

    Article  ADS  Google Scholar 

  4. S. Chaudhary, N. Nimje, N. Yadav, and S. Ghosh, Phys. Res. Int. 4, 51 (2014).

    Google Scholar 

  5. A. Sharma, N. Yadav, and S. Ghosh, Int. J. Sci. Res. Pub. 3, 1 (2013).

    Google Scholar 

  6. A. Muley and S. Ghosh, Int. J. Eng. Sci. Res. Tech. 4, 88 (2015).

    Google Scholar 

  7. S. Choudhary, N. Yadav, and S. Ghosh, Int. J. Eng. Sci. Res. Tech. 4, 51 (2015).

    Google Scholar 

  8. S. Ghosh and P. Dubey, Can. J. Phys. 95, 95 (2016).

    Article  ADS  Google Scholar 

  9. S. Ghosh and A. Muley, Phys. Plasmas 23, 122115 (2016).

    Article  ADS  Google Scholar 

  10. S. Ghosh and P. Dubey, Acta Acust. United AC 103, 1009 (2017).

    Article  Google Scholar 

  11. S. Ghosh and P. Dubey, Acta Phys. Polon. A 133, 1287 (2018).

    Article  Google Scholar 

  12. E. A. Karashtin, Phys. Solid State 59, 2189 (2017).

    Article  ADS  Google Scholar 

  13. A. B. Mikhailovskii, Sov. Phys. JETP 25, 831 (1967).

    ADS  Google Scholar 

  14. J. Vranjes and S. Poedts, Phys. Plasmas 11, 891 (2004).

    Article  ADS  Google Scholar 

  15. K. A. Brekhov, K. A. Grishunin, D. V. Afanas’ev, S. V. Semin, N. E. Sherstyuk, E. D. Mishina, and A. V. Kimel, Phys. Solid State 60, 31 (2018).

    Article  ADS  Google Scholar 

  16. G. Sharma and S. Ghosh, Eur. Phys. J. D 15, 79 (2001).

    Article  ADS  Google Scholar 

  17. A. Neogi and S. Ghosh, J. Appl. Phys. 69, 61 (1991).

    Article  ADS  Google Scholar 

  18. C. S. Wang, Quantum Electronics, Part A, Ed. by H. Rabin and C. L. Tang (Academic, New York, 1975).

    Google Scholar 

  19. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. Lett. 127, 1918 (1962).

    ADS  Google Scholar 

  20. R. Kronig and J. I. Boukema, K. Ned. Akad. Wet. Proc., Ser. B 66, 8 (1963).

    Google Scholar 

  21. G. S. He and S. H. Liu, Physics of Non-Linear Optics (World Scientific, Singapore, 1999).

    Book  Google Scholar 

  22. G. M. Savchenko, V. V. Dudelev, V. V. Lundin, A. V. Sakharov, A. F. Tsatsul’nikov, E. A. Kognovitskaya, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, N. S. Averkiev, and G. S. Sokolovskii, Phys. Solid State 59, 1702 (2017).

    Article  ADS  Google Scholar 

  23. A. Bahabad, M. M. Murnane, and C. H. Kapteyn, Nat. Photon. 4, 570 (2010).

    Article  ADS  Google Scholar 

  24. M. M. Fejer, G. A. Magel, D. H. Jund, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1991).

    Article  ADS  Google Scholar 

  25. Zh. Kudyshev, I. Gabitov, and A. Maimistov, Phys. Rev. A 87, 063840 (2013).

    Article  ADS  Google Scholar 

  26. I. Karabulut and S. Baskoutas, J. Appl. Phys. 103, 073512 (2008).

    Article  ADS  Google Scholar 

  27. R. Turton, The Quantum Dot — A Journey into the Future of Microelectronics (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  28. G. Bastard, J. A. Brum, and R. Ferreira, Phys. Solid State 44, 229 (1991).

    Article  Google Scholar 

  29. P. Balcou, R. Haroutunian, S. Sebban, G. Grillon, A. Rousse, G. Mullot, P. Chambaret, G. Rey, A. Antonetti, D. Hulin, L. Roos, D. Descamps, M. B. Gaar-de, A. L’Huillier, E. Constant, et al., Appl. Phys. B 74, 509 (2002).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors (Kamal Jain) is thankful to the University Grant Commission, New Delhi, India, for the financial assistance under Maulana Azad Minority Fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jain.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Dubey, S. & Jain, K. Temporal Instability of Acoustic Wave in a Semiconductor Plasma Medium under Momentum Mismatched Condition. Phys. Solid State 62, 628–635 (2020). https://doi.org/10.1134/S1063783420040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420040101

Keywords:

Navigation