Skip to main content
Log in

Pargyline and р-Chlorophenylalanine Decrease Expression of Ptpn5 Encoding Striatal-Enriched Protein Tyrosine Phosphatase (STEP) in the Mouse Striatum

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Striatal-enriched protein tyrosine phosphatase (STEP), which was initially identified in the striatum, is encoded by the Ptpn5 gene and is expressed in neurons of various structures of the brain. STEP is involved in regulating neuroplasticity, and its expression abnormalities are associated with human neurodegenerative disorders. The STEP inhibitor 8-trifluoromethyl-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153) has been shown to affect the serotoninergic system of the brain. However, the influence of the serotoninergic system on the STEP regulation has not been studied yet. The aim of the study was to investigate how pharmacologically induced changes in the brain serotonin (5-HT) level affect Ptpn5 expression and STEP activity in adult male C57BL/6J mice. To modulate the 5-HT level in the brain, the 5-HT synthesis inhibitor p-chlorophenylalanine or 5-HT degradation inhibitor pargyline was administered intraperitoneally for three successive days. Changes in 5-HT concentration in the brain were assayed using high-performance liquid chromatography. The STEP activity was determined spectrophotometrically in the supernatant by the rate of p-nitrophenyl phosphate dephosphorylation in the absence and presence of the selective STEP inhibitor TC-2153. The Ptpn5 mRNA level was determined using quantitative RT-PCR. The Ptpn5 expression level in the striatum was three times higher than in the cortex and hippocampus. Both increases and decreases in brain 5-HT were for the first time associated with a decrease in Ptpn5 mRNA in the striatum. STEP activity in the striatum and cortex was significantly higher than in the hippocampus. However, p-chlorophenylalanine and pargyline did not affect the STEP activity in the brain structures tested. Thus, a new method was proposed to study the STEP activity in the brain and p-chlorophenylalanine and pargyline were shown to decrease Ptpn5 expression in the striatum in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Venkitaramani D.V., Paul S., Zhang Y., Kurup P., Ding L., Tressler L., Allen M., Sacca R., Picciotto M.R., Lombroso P.J. 2009. Knockout of striatal enriched protein tyrosine phosphatase in mice results in increased ERK1/2 phosphorylation. Synapse. 63, 69‒81.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pelov I., Teltsh O., Greenbaum L., Rigbi A., Kanyas-Sarner K., Lerer B., Lombroso P., Kohn Y. 2012. Involvement of PTPN5, the gene encoding the striatal-enriched protein tyrosine phosphatase, in schizophrenia and cognition. Psychiatr. Genet.22, 168‒176.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Goebel-Goody S.M., Baum M., Paspalas C.D., Fernandez S.M., Carty N.C., Kurup P., Lombroso P.J. 2012. Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol. Rev.64, 65‒87.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Olausson P., Venkitaramani D.V., Morand T.D., Salterd M.W., Taylora J.R., Lombroso P.J. 2012. The tyrosine phosphatase STEP constrains amygdala-dependent memory formation and neuroplasticity. J. Neurosci.225, 1‒8.

    CAS  Google Scholar 

  5. Gladding C.M., Fan J., Zhang L.Y., Wang L., Xu J., Li E.H., Lombroso P.J., Raymond L.A. 2014. Alterations in striatal-enriched protein tyrosine phosphatase (STEP) expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington’s disease mouse model. J. Neurochem.130, 145‒159.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nguyen T.H., Liu J., Lombroso P.J. 2002. Striatal enriched phosphatase 61 dephosphorylates Fyn at phosphotyrosine 420. J. Biol. Chem.277, 24274‒24279.

    CAS  PubMed  Google Scholar 

  7. Xu J., Kurup P., Bartos J.A., Patriarchi T., Hell J.W., Lombroso P.J. 2012. Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity. J. Biol. Chem.287, 20942–20956.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurup P., Zhang Y., Xu J., Venkitaramani D.V., Haroutunian V., Greengard P., Nairn A.C., Lombroso P.J. 2010. A beta-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61. J. Neurosci.30, 5948‒5957.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kulikov A.V., Gainetdinov R.R., Ponimaskin E., Kalueff A.V., Naumenko V.S., Popova N.K. 2018. Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy. Expert Opin. Ther. Targets. 22, 319‒330.

    PubMed  Google Scholar 

  10. Popova N.K., Naumenko V.S. 2019. Neuronal and behavioral plasticity: The role of serotonin and BDNF systems tandem. Expert Opin. Ther. Targets.23, 227‒239.

    CAS  PubMed  Google Scholar 

  11. Lucki I. 1998. The spectrum of behavior influenced by serotonin. Biol. Psychiatry.44, 151‒162.

    CAS  PubMed  Google Scholar 

  12. Walther D.J., Peter J.U., Bashammakh S., Hörtnagl H., Voits M., Fink H., Bader M. 2003. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science.299, 76.

    CAS  PubMed  Google Scholar 

  13. Popova N.K., Kulikov A.V. 2010. Targeting tryptophan hydroxylase 2 in affective disorder. Expert Opin. Ther. Targets. 14, 1259‒1271.

    CAS  PubMed  Google Scholar 

  14. Kulikov A.V., Popova N.K. 2015. Tryptophan hydroxylase 2 in seasonal affective disorder: Underestimated perspectives? Rev. Neurosci.26, 679‒690.

    CAS  PubMed  Google Scholar 

  15. Kulikova E.A., Kulikov A.V. 2019. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: Focus on animal models. Expert Opin. Ther. Targets.23, 655‒667.

    CAS  PubMed  Google Scholar 

  16. Shih J.C., Thompson R.F. 1999. Monoamine oxidase in neuropsychiatry and behavior. Am. J. Hum. Genet. 65, 593‒598.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Allen D.L., Renner K.J., Luine V.N. 1993. Pargyline-induced increase in serotonin levels: Correlation with inhibition of lordosis in rats. Pharmacol. Biochem. Behav. 45, 837‒841.

    CAS  PubMed  Google Scholar 

  18. Edmondson D.E., Mattevi A., Binda C., Li M., Hubálek F. 2004. Structure and mechanism of monoamine oxidase. Curr. Med. Chem.11, 1983‒1993.

    CAS  PubMed  Google Scholar 

  19. Kulikova E.A., Bazhenova E.Y., Popova N.K., Khomenko T.M., Volcho K.P., Salakhutdinov N.F., Kulikov A.V. 2015. Effect of acute administration of 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153) on biogenic amines metabolism in mouse brain. Lett. Drug Design Discov.12, 833‒836.

    CAS  Google Scholar 

  20. Kulikov A.V., Tikhonova M.A., Kulikova E.A., Khomenko T.M., Korchagina D.V., Volcho K.P., Salakhutdinov N.F., Popova N.K. 2011. Effect of a new potential psychotropic drug, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride, on the expression of serotonin-related genes in the mouse brain. Mol. Biol. (Moscow). 45 (2), 251‒257.

    CAS  Google Scholar 

  21. Kulikova E.A., Khotskin N.V., Illarionova N.B., Sorokin I.E., Bazhenova E.Y., Kondaurova E.M., Volcho K.P., Khomenko T.M., Salakhutdinov N.F., Ponimaskin E., Naumenko V.S., Kulikov A.V. 2018. Inhibitor of striatal-enriched protein tyrosine phosphatase, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), produces antidepressant-like effect and decreases functional activity and protein level of 5-HT(2A) receptor in the brain. Neuroscience.394, 220‒231.

    CAS  PubMed  Google Scholar 

  22. Kulikov A.V., Naumenko V.S., Voronova I.P., Tikhonova M.A., Popova N.K. 2005. Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor mRNAs using genomic DNA as an external standard. J. Neurosci. Methods.141, 97‒101.

    CAS  PubMed  Google Scholar 

  23. Naumenko V.S., Osipova D.V., Kostina E.V., Kulikov A.V. 2008. Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain. J Neurosci. Methods. 170, 197‒203.

    CAS  PubMed  Google Scholar 

  24. Khotskin N.V., Plyusnina A.V., Kulikova E.A., Bazhenova E.Y., Fursenko D.V., Sorokin I.E., Kolotygin I., Mormede P., Terenina E.E., Shevelev O.B., Kulikov A.V. 2019. On association of the lethal yellow (AY) mutation in the agouti gene with the alterations in mouse brain and behavior. Behav. Brain Res.359, 446‒456.

    CAS  PubMed  Google Scholar 

  25. MacKintosh C., Moorhead G. 1993. Assay and purification of protein (serine/threonine) phosphatases. In: Protein Phosphorylation: A Practical Approach. Ed. Hardie D.G. New York: IRL Press, pp. 153‒182.

    Google Scholar 

  26. Kulikova E., Kulikov A. 2017. Striatal-enriched tyrosine protein phosphatase (STEP) in the mechanisms of depressive disorders. Curr. Protein Pept. Sci.18, 1152‒1162.

    CAS  PubMed  Google Scholar 

  27. Mehta H., Saravanan K.S., Mohanakumar K.P. 2003. Serotonin synthesis inhibition in olivo-cerebellar system attenuates harmaline-induced tremor in Swiss albino mice. Behav. Brain Res. 145, 31‒36.

    CAS  PubMed  Google Scholar 

  28. Dailly E., Chenu F., Petit-Demoulière B., Bourin M. 2006. Specificity and efficacy of noradrenaline, serotonin depletion in discrete brain areas of Swiss mice by neurotoxins. J. Neurosci. Methods.150, 111‒115.

    CAS  PubMed  Google Scholar 

  29. Kornum B.R., Licht C.L., Weikop P., Knudsen G.M., Aznar S. 2006. Central serotonin depletion affects rat brain areas differently: A qualitative and quantitative comparison between different treatment schemes. Neurosci. Lett. 392, 129‒134.

    CAS  PubMed  Google Scholar 

  30. Izumi T., Iwamoto N., Kitaichi Y., Kato A., Inoue T., Koyama T. 2006. Effects of co-administration of a selective serotonin reuptake inhibitor and monoamine oxidase inhibitors on 5-HT-related behavior in rats. Eur. J. Pharmacol.532, 258‒264.

    CAS  PubMed  Google Scholar 

  31. Lima F.B., Szawka R.E., Anselmo-Franci J.A., Franci C.R. 2007. Pargyline effect on luteinizing hormone secretion throughout the rat estrous cycle: Correlation with serotonin, catecholamines and nitric oxide in the medial preoptic area. Brain Res.1142, 37‒45.

    CAS  PubMed  Google Scholar 

  32. Fisar Z., Hroudová J., Raboch J. 2010. Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers. Neuro Endocrinol. Lett.31, 645‒656.

    CAS  PubMed  Google Scholar 

  33. Kulikov A.V., Osipova D.V., Naumenko V.S., Terenina E., Mormède P., Popova N.K. 2012. A pharmacological evidence of positive association between mouse intermale aggression and brain serotonin metabolism. Behav. Brain Res.233, 113‒119.

    CAS  PubMed  Google Scholar 

  34. Roth B.L. 2011. 5-HT(2A) serotonin receptor biology: Interacting proteins, kinases and paradoxical regulation. Neuropharmacology. 61, 348‒354.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shimizu S., Tatara A., Imaki J., Ohno Y. 2010. Role of cortical and striatal 5-HT1A receptors in alleviating antipsychotic-induced extrapyramidal disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry.34, 877‒881.

    CAS  PubMed  Google Scholar 

  36. Borsini F. 1995. Role of the serotonergic system in the forced swimming test. Neurosci. Biobehav. Rev.19, 377‒395.

    CAS  PubMed  Google Scholar 

  37. Nagayama H., Tsuchiyama K., Yamada K., Akiyoshi J. 1991. Animal study on the role of serotonin in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry.15, 735‒744.

    CAS  PubMed  Google Scholar 

  38. Jacobsen J.P., Medvedev I.O., Caron M.G. 2012. The 5-HT deficiency theory of depression: Perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos. Trans. R. Soc., B.367, 2444‒2459.

  39. Shah R., Courtiol E., Castellanos F.X., Teixeira C.M. 2018. Abnormal serotonin levels during perinatal development lead to behavioral deficits in adulthood. Front. Behav. Neurosci.12, 114.

    PubMed  PubMed Central  Google Scholar 

  40. Kulikova E.A., Volcho K.P., Salakhutdinov N.F. and Kulikov A.V. 2017. Benzopentathiepine derivative, 8‑(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), as a promising antidepressant of new generation. Lett. Drug Des. Discov.14, 974‒984.

    CAS  Google Scholar 

  41. Kulikov A.V., Tikhonova M.A., Kulikova E.A., Volcho K.P., Khomenko T.M., Salakhutdinov N.F., Popova N.K. 2014. Antidepressant activity of 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153): Comparison with classical antidepressants. Lett. Drug Des. Discov.11, 169‒173.

    CAS  Google Scholar 

  42. Kulikova E.A., Tikhonova M.A., Volcho K.P., Khomenko T.M., Salakhutdinov N.F., Kulikov A.V., Popova N.K. 2015. Comparison of psychotropic effects of fluoxetine, imipramine, and the new psychotropic drug TC-2153 in mice differing in hereditary predisposition to catalepsy. Zh. Vyssh. Nerv. Deyat.im.I.P. Pavlova.65, 105‒112.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to researchers of the Laboratory of Physiologically Active Compounds (headed by Doct. Sci. (chem.), Prof. N.F. Salakhutdinov) of the Vorozhtsov Novosibirsk Institute of Organic Chemistry (Siberian Branch, Russian Academy of Sciences) for kindly providing TC-2153.

Funding

This work was supported by the Russian Science Foundation (project no. 17-15-01032). The breeding and rearing of animals were supported by a budgetary program for young researchers (project no. 0259-2019-0002) and were carried out using equipment of the Collective Access Center of Genetic Resources of Laboratory Animals (Institute of Cytology and Genetics), which was supported by the Ministry of Education and Science of the Russian Federation (unique project identifier RFMEFI62119X0023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kulikova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Animal rearing conditions and experimental procedures followed the guidelines established by The Directive 2010/63/EU of the European Parliament and the Council of 22 September 2010 and were approved by the Ethics Committee at the Institute of Cytology and Genetics.

Additional information

Translated by T. Tkacheva

Abbreviations: 5-HT, serotonin; Ptpn5, the STEP gene; Polr2a, DNA-directed RNA polymerase II; STEP, striatal-enriched protein tyrosine phosphatase; MAOA, monoamine oxidase A; TPH2, tryptophan hydroxylase 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, E.A., Fursenko, D.V., Bazhenova, E.Y. et al. Pargyline and р-Chlorophenylalanine Decrease Expression of Ptpn5 Encoding Striatal-Enriched Protein Tyrosine Phosphatase (STEP) in the Mouse Striatum. Mol Biol 54, 274–280 (2020). https://doi.org/10.1134/S0026893320020090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320020090

Keywords:

Navigation