Skip to main content
Log in

The Dynamics and Control of the Fractional Forms of Some Rational Chaotic Maps

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper proposes three fractional discrete chaotic systems based on the Rulkov, Chang, and Zeraoulia-Sprott rational maps. The dynamics of the proposed maps are investigated by means of phase plots and bifurcations diagrams. Adaptive stabilization schemes are proposed for each of the three maps and the convergence of the states is established by using the Lyapunov method. Furthermore, a combination synchronization scheme is proposed whereby a combination of the fractional Rulkov and Chang maps is synchronized to the fractional Zeraoulia-Sprott map. Numerical results are used to confirm the findings of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lorenz E N, Deterministic nonperiodic flow, J. Atmos. Sci., 1963, 20(2): 130–141.

    MathSciNet  MATH  Google Scholar 

  2. Hénon M, A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 1976, 50(1): 69–77.

    MathSciNet  MATH  Google Scholar 

  3. Lozi R, Un atracteur étrange du type attracteur de hénon. J. Physique, 1978, 39: 9–10.

    Google Scholar 

  4. Hitzl D and Zele F, An exploration of the hénon quadratic map. Phys. D Nonlinear Phenom., 1985, 14: 305–326.

    MATH  Google Scholar 

  5. Baier G and Sahle S, Design of hyperchaotic flows. Phys. Rev. E, 1995, 51: 2712–2714.

    Google Scholar 

  6. Stefanski K, Modelling chaos and hyperchaos with 3D maps, Chaos Solitons & Fractals, 1998, 9(1-2): 83–93.

    MathSciNet  MATH  Google Scholar 

  7. Itoh M, Yang T, and Chua L, Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int. J. Bifurcation Chaos, 2001, 11: 551–558.

    MathSciNet  MATH  Google Scholar 

  8. Wang X Y, Chaos in Complex Nonlinear Systems, Publishing House of Electronics Industry, Beijing, 2003.

    Google Scholar 

  9. Lu J, Wu X, Lu J, et al., A new discrete chaotic system with rational fraction and its dynamical behaviors. Chaos, Solitons & Fractals, 2004, 22: 311–319.

    MathSciNet  MATH  Google Scholar 

  10. Rulkov N, Modeling of spiking-bursting neural behavior using two-dimensional map, Phys. Rev. E, 2002, 65(4): 0419222.

    MathSciNet  MATH  Google Scholar 

  11. Chang L, Lu J, and Deng X, A new two-dimensional discrete chaotic system with rational fraction and its tracking and synchronization. Chaos, Solitons & Fractals, 2005, 24: 1135–1143.

    MathSciNet  MATH  Google Scholar 

  12. Zeraoulia E and Sprott J, On the dynamics of a new simple 2D rational discrete mapping, Int. J. Bifur. Chaos, 2011, 21(1): 1–6.

    Google Scholar 

  13. Zhou P and Zhu P, A practical synchronization approach for fractional-order chaotic systems, Nonlinear Dynamics, 2017, 89(3): 1719–1726.

    MathSciNet  MATH  Google Scholar 

  14. Zhou P, Cai H, and Yang C, Stabilization of the unstable equilibrium points of the fractional-order bldcm chaotic system in the sense of lyapunov by a single-state variable, Nonlinear Dynamics, 2016, 84(4): 2357–2361.

    MathSciNet  MATH  Google Scholar 

  15. Zhu W, Li W, Zhou P, et al., Consensus of fractional-order multi-agent systems with linear models via observer-type protocol. Neurocomputing, 2017, 230: 60–65.

    Google Scholar 

  16. Khan A and Tyagio A, Fractional order disturbance observer based adaptive sliding mode synchronization of commensurate fractional order genesio-tesi system. AEU-International Journal of Electronics and Communications, 2017, 82: 346–357.

    Google Scholar 

  17. Khan A and Tyagi A, Analysis and hyper-chaos control of a new 4-d hyper-chaotic system by using optimal and adaptive control design, International Journal of Dynamics and Control, 2017, 5(4): 1147–1155.

    MathSciNet  Google Scholar 

  18. Atici F M and Eloe P W, Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I, 2009, 3: 1–12.

    MATH  Google Scholar 

  19. Anastassiou G, Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model., 2010, 52: 556–566.

    MathSciNet  MATH  Google Scholar 

  20. Abdeljawad T, On Riemann and Caputo fractional differences. Comput. Math. Appl., 2011, 62: 1602–1611.

    MathSciNet  MATH  Google Scholar 

  21. Goodrich C and Peterson A C, Discrete Fractional Calculus, Springer, German, 2015.

    MATH  Google Scholar 

  22. Baleanu D, Wu G, Bai Y, et al., Stability analysis of Caputo-like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simul., 2017, 48: 520–530.

    MathSciNet  Google Scholar 

  23. Wu G and Baleanu D, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 2013, 75(1-2): 283–287.

    MathSciNet  MATH  Google Scholar 

  24. Hu T, Discrete chaos in fractional Hénon map. Appl. Math., 2014, 5: 2243–2248.

    Google Scholar 

  25. Wu G C and Baleanu D, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 2015, 80(4): 1697–1703.

    MathSciNet  Google Scholar 

  26. Shukla M K and Sharma B B, Investigation of chaos in fractional order generalized hyperchaotic Hénon map. Int. J. Elec. Comm., 2017, 78: 265–273.

    Google Scholar 

  27. Wu G and Baleanu D, Chaos synchronization of the discrete fractional logistic map. Signal Process, 2014, 102: 96–99.

    Google Scholar 

  28. Wu G, Baleanu D, Xie H, et al., Chaos synchronization of fractional chaotic maps based on the stability condition. Physica A, 2016, 460: 374–383.

    MathSciNet  MATH  Google Scholar 

  29. Liu Y, Chaotic synchronization between linearly coupled discrete fractional hénon maps. Indian J. Phys., 2016, 90: 313–317.

    Google Scholar 

  30. Megherbi O, Hamiche H, Djennoune S, et al., A new contribution for the impulsive synchronization of fractional-order discrete-time chaotic systems. Nonlinear Dyn., 2017, 90: 1519–1533.

    MathSciNet  MATH  Google Scholar 

  31. Huang L L, Baleanu D, Wu G C, et al., A new application of the fractional logistic map. Rom. J. Phys., 2016, 61: 1172–1179.

    Google Scholar 

  32. Edelman M, On stability of fixed points and chaos in fractional systems, Chaos, 2018, 28: 023112.

    MathSciNet  MATH  Google Scholar 

  33. Jaulin L, Mobile Robotics, Elsevier, Amsterdam, Netherlands, 2016.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Guanrong Chen, Department of Electronic Engineering, City University of Hong Kong for suggesting many helpful references. The author Adel Ouannas was supported by the Directorate General for Scientific Research and Technological Development of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adel Ouannas, Amina-Aicha Khennaoui, Samir Bendoukha, Zhen Wang or Viet-Thanh Pham.

Additional information

This paper was supported by the Natural Science Foundation of China under Grant Nos. 11726624, 11726623, 61473237, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No. 2018GY-091, the Natural Science Basic Research Plan in Shandong Province of China under Grant No. ZR2017PA008.

This paper was recommended for publication by Editor CHEN Jie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouannas, A., Khennaoui, AA., Bendoukha, S. et al. The Dynamics and Control of the Fractional Forms of Some Rational Chaotic Maps. J Syst Sci Complex 33, 584–603 (2020). https://doi.org/10.1007/s11424-020-8326-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-8326-6

Keywords

Navigation