Skip to main content
Log in

A Novel Index of Contact Frequency from Noise Protein–Protein Interaction Data Help for Accurate Interface Residue Pair Prediction

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Protein–protein interactions are important for most biological processes and have been studied for decades. However, the detailed formation mechanism of protein–protein interaction interface is still ambiguous, which makes it difficult to accurately predict the protein–protein interaction interface residue pairs. Here, we extract the interface residue–residue contacts from the decoys in the ZDOCK protein–protein complex decoy set with RMSD mostly larger than 3 Å. To accurately compute the interface residue–residue contacts, we define a new constant called interface residue pairs frequency, which counts the atom contact numbers between two interface residues. We normalize interface residue pairs frequency to pick out the top residue–residue pairs from all the possible pairs preferential to be on correct protein–protein interaction interface. When tested on 37 protein dimers from the decoy set where most decoys are incorrect, our method successfully predicts 30 protein dimers with a success rate of up to 81.1%. Higher accuracy than some other state-of-the-art methods confirmed the performance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levy ED, Pereira-Leal JB (2008) Evolution and dynamics of protein interactions and networks. Curr Opin Struct Biol 18(3):349–357. https://doi.org/10.1016/j.sbi.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  2. Reichmann D, Rahat O, Cohen M et al (2007) The molecular architecture of protein-protein binding sites. Curr Opin Struct Biol 17(1):67–76. https://doi.org/10.1016/j.sbi.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  3. Malta TM, Sokolov A et al (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173:338–354. https://doi.org/10.1016/j.cell.2018.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vidal M, Cusick ME, Barabási AL (2011) Interactome networks and human disease. Cell 144(6):986–998. https://doi.org/10.1016/j.cell.2011.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chung JL, Wang W, Bourne PE (2006) Exploiting sequence and structure homologs to identify protein–protein binding sites. Proteins 62(3):630–640. https://doi.org/10.1002/prot.20741

    Article  CAS  PubMed  Google Scholar 

  6. Ofran Y, Rost B (2007) Protein-protein interaction hotspots carved into sequences. PLoS Comput Biol 3:e119. https://doi.org/10.1371/journal.pcbi.0030119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sikić M, Tomić S, Vlahovicek K (2009) Prediction of protein–protein interaction sites in sequences and 3D structures by random forests. PLoS Comput Biol 5(1):e1000278. https://doi.org/10.1371/journal.pcbi.1000278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen XW, Liu M (2005) Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 21(24):4394–4400. https://doi.org/10.1093/bioinformatics/bti721

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Yang YX et al (2017) Different protein–protein interface patterns predicted by different machine learning methods. Sci Rep 7(1):16023. https://doi.org/10.1038/s41598-017-16397-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai WT, Wu AP, Ma LX et al (2016) A novel index of protein–protein interface propensity improves interface residue recognition. BMC Syst Biol 10:112. https://doi.org/10.1186/s12918-016-0351-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones S, Thornton JM (1996) Principles of protein–protein interactions. Proc Natl Acad Sci USA 93(1):13–20. https://doi.org/10.1073/pnas.93.1.13

    Article  CAS  PubMed  Google Scholar 

  12. Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein–protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108(4):1225–1244. https://doi.org/10.1002/chin.200826266

    Article  CAS  PubMed  Google Scholar 

  13. Nooren IM, Thornton JM (2003) Diversity of protein–protein interactions. EMBO J 22(14):3486–3492. https://doi.org/10.1093/emboj/cdg359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brenke R, Hall DR et al (2012) Application of asymmetric statistical potentials to antibody–protein docking. Bioinformatics 28(20):2608–2614. https://doi.org/10.1093/bioinformatics/bts493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen H, Zhou HX (2005) Prediction of interface residues in protein–protein complexes by a consensus neural network method: test against NMR data. Proteins 61(1):21–35. https://doi.org/10.1002/prot.20514

    Article  CAS  PubMed  Google Scholar 

  16. Fischer E (2010) Ueber die optischen Isomeren des Traubenzuckers, der Gluconsäure und d-er Zuckersäure. Eur J Inorg Chem 23(2):2611–2624. https://doi.org/10.1002/cber.189002302157

    Article  Google Scholar 

  17. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44(2):98–104. https://doi.org/10.1073/pnas.44.2.98

    Article  CAS  PubMed  Google Scholar 

  18. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267(5196):383–386. https://doi.org/10.1126/science.7529940

    Article  CAS  PubMed  Google Scholar 

  19. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280(1):1–9. https://doi.org/10.1006/jmbi.1998.1843

    Article  CAS  PubMed  Google Scholar 

  20. Janin J, Henrick K, Moult J et al (2003) CAPRI: a critical assessment of predicted interactions. Proteins 52(1):2–9. https://doi.org/10.1002/prot.10381

    Article  CAS  PubMed  Google Scholar 

  21. Chen R, Tong W, Mintseris J et al (2003) ZDOCK predictions for the CAPRI challenge. Proteins 52(1):68–73. https://doi.org/10.1002/prot.10388

    Article  CAS  PubMed  Google Scholar 

  22. Pierce B, Weng ZP (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 67(4):1078–1086. https://doi.org/10.1002/prot.21373

    Article  CAS  PubMed  Google Scholar 

  23. Chen R, Weng Z (2003) A novel shape complementarity scoring function for protein-protein docking. Proteins 51(3):397–408. https://doi.org/10.1002/prot.10334

    Article  CAS  PubMed  Google Scholar 

  24. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1):80–87. https://doi.org/10.1002/prot.10389

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Chen R, Weng Z (2003) RDOCK: refinement of rigid-body protein docking predictions. Proteins 53(3):693–707. https://doi.org/10.1002/prot.10460

    Article  CAS  PubMed  Google Scholar 

  26. Hwang H, Vreven T, Pierce BG et al (2010) Performance of ZDOCK and ZRANK in CAPRI rounds 13–19. Proteins 78(15):3104–3110. https://doi.org/10.1002/prot.22764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hwang H, Vreven T, Weng Z (2014) Binding interface prediction by combining protein–protein docking results. Proteins 82(1):57–66. https://doi.org/10.1002/prot.24354

    Article  CAS  PubMed  Google Scholar 

  28. Brooks BR, Brooks CL 3rd, Mackerell AD Jr et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614. https://doi.org/10.1002/jcc.21287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hwang H, Pierce B, Mintseris J et al (2008) Protein–protein docking benchmark version 3.0. Proteins 73(3):705–709

    Article  CAS  Google Scholar 

  30. Hwang H, Vreven T, Janin J et al (2010) Protein–protein docking benchmark version 4.0. Proteins 78(15):3111–3114

    Article  CAS  Google Scholar 

  31. Zhao Z, Gong X (2019) Protein-protein interaction interface residue pair prediction based o-n deep learning architecture. IEEE/ACM Trans Comput Biol Bioinform 16(5):1753–1759. https://doi.org/10.1109/TCBB.2017.2706682

    Article  PubMed  Google Scholar 

  32. Minhas Fu, Geiss BJ, Benhur A (2014) PAIRpred: partner-specific prediction of interacting residues from sequence and structure. Proteins 82(7):1142–1155. https://doi.org/10.1002/prot.24479

    Article  CAS  PubMed  Google Scholar 

  33. Ahmad S, Mizuguchi K (2011) Partner-aware prediction of interacting residues in protein–protein complexes from sequence data. PLoS ONE 6(12):e29104. https://doi.org/10.1371/journal.pone.0029104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murakami Y, Mizuguchi K (2010) Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein–protein interaction sites. Bioinformatics 26(15):1841–1848. https://doi.org/10.1093/bioinformatics/btq302

    Article  CAS  PubMed  Google Scholar 

  35. Porollo A, Meller J (2007) Prediction-based fingerprints of protein-protein interactions. Proteins 66(3):630–645. https://doi.org/10.1002/prot.21248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper has been accepted by CBC2019. We thank the CBC2019 reviewers. This research was supported by the National Natural Science Foundation of China (31670725) and Beijing Advanced Structural Biology Center of Tsinghua University, the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China.

Author information

Authors and Affiliations

Authors

Contributions

YFL developed the algorithm, did the computation, and wrote the initial manuscript. HH helped to write data analysis code and data processing. XQG designed the project, collected the data and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinqi Gong.

Ethics declarations

Conflict of Interest

The author states that the present manuscript presents no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Y., Huang, H. & Gong, X. A Novel Index of Contact Frequency from Noise Protein–Protein Interaction Data Help for Accurate Interface Residue Pair Prediction. Interdiscip Sci Comput Life Sci 12, 204–216 (2020). https://doi.org/10.1007/s12539-020-00364-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-020-00364-w

Keywords

Navigation