Skip to main content
Log in

Synthesis, Structural Analysis, and Biological Evaluation of Novel ((2,4-dioxothiazolidin-5-ylidene)methyl)phenyl Derivatives

  • Research Paper
  • Biomedical Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the synthesis, structural analysis, and biological effects of novel ((2, 4-dioxothiazolidin-5-ylidene)methyl)phenyl derivatives. The efficacy of 15-PGDH inhibition increased for the substituents in the derivatives in the order: cyclohexylpropyl > cyclohexylethyl > cyclohexylmethyl > cyclohexyl. Compound 12 inhibited 15-PGDH activity by binding to the amino acids Ile 214, Ile 210, Ile 194, Gln 148, and Leu 191 of 15-PGDH. Compounds 4, 22, and 23 produced the highest increment in PGE2 concentration, which was 122.19, 100.14, and 206.80%, respectively, compared to that of the control. Also, compounds 38 and 39, in which the central phenyl ring and the 2, 4-thiazolidinedione moiety were linked by a single bond, produced a relatively high increment in PGE2 concentration, which was 106.81 and 118.66%, respectively, compared to that of the control. The wound closure rates of compounds 22 and 39 were the highest, being 247.56 and 202.42%, respectively, compared to that of the positive control. Therefore, compounds 22 and 39 could not only efficiently regulate PGE2 concentration, but also induce cellular regeneration, and are expected to effectively treat a variety of diseases resulting from PGE2 deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, P. (1997) Wound healing, aiming for perfect skin regeneration. Science. 276: 75–81.

    Article  CAS  Google Scholar 

  2. Diegelmann, R. F. and M. C. Evans (2004) Wound healing: An overview of acute, fibrotic and delayed healing. Front Biosci. 9: 283–289.

    Article  CAS  Google Scholar 

  3. Ricciotti, E. and G. A. FitzGerald (2011) Prostaglandins and inflammation. Arterioscler Thromb. Vasc. Biol. 31: 986–1000.

    Article  CAS  Google Scholar 

  4. Loynes, C. A., J. A. Lee, A. L. Robertson, M. J. Steel, F. Ellett, Y. Feng, B. D. Levy, M. K. Whyte, and S. A. Renshaw (2018) PGE2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Sci. Adv. 4: eaar8320.

  5. Kalinski, P. (2012) Regulation of immune responses by prostaglandin E2. J. Immunol. 188: 21–28.

    Article  CAS  Google Scholar 

  6. Antczak, M. I., Y. Zhang, C. Wang, J. Doran, J. Naidoo, S. Voruganti, N. S. Williams, S. D. Markowitz, and J. M. Ready (2017) Inhibitors of 15-prostaglandin dehydrogenase to potentiate tissue repair. J. Med. Chem. 60: 3979–4001.

    Article  CAS  Google Scholar 

  7. Samuelsson. B., R. Morgenstern, and P. J. Jakobsson (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol. Rev. 59: 207–224.

    Article  CAS  Google Scholar 

  8. Kawahara, K., H. Hohjoh, T. Inazumi, S. Tsuchiya, and Y. Sugimoto (2015) Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim Biophys Acta. 1851: 414–421.

    Article  CAS  Google Scholar 

  9. Süleyman, H., B. Demircan, and Y. Karagöz (2007) Antiinflammatory and side effects of cyclooxygenase inhibitors. Pharmacol. Rep. 59: 247–258.

    PubMed  Google Scholar 

  10. Otsuka, S., T. Aoyama, M. Furu, K. Ito, Y. Jin, A. Nasu, K. Fukiage, Y. Kohno, T. Maruyama, T. Kanajik, A. Nishiura, H. Sugiharak, S. Fujimurak, T. Otsuka, T. Nakamura, and J. Toguchida (2009) PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage. Osteoarthritis Cartilage. 17: 529–538.

    Article  CAS  Google Scholar 

  11. Chizzolini, C. and N. C. Brembilla (2009) Prostaglandin E2: igniting the fire. Immunol. Cell Biol. 87: 510–511.

    Article  Google Scholar 

  12. Yokoyama, U., K. Iwatsubo, M. Umemura, T. Fujita, and Y. Ishikawa (2013) The prostanoid EP4 receptor and its signaling pathway. Pharmacol. Rev. 65: 1010–1052.

    Article  Google Scholar 

  13. Ensor, C. M. and H. H. Tai (1994) Bacterial expression and sitedirected mutagenesis of two critical residues (tyrosine-151 and lysine-155) of human placental NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Biochim Biophys Acta. 1208: 151–156.

    Article  CAS  Google Scholar 

  14. Hamza, A., H. Cho, H. H. Tai, and C. G. Zhan (2005) Understanding human 15-hydroxyprostaglandin dehydrogenase binding with NAD+ and PGE2 by homology modeling, docking and molecular dynamics simulation. Bioorg. Med. Chem. 13: 4544–4551.

    Article  CAS  Google Scholar 

  15. Cho, H., L. Huang, A. Hamza, D. Gao, C. G. Zhan, and H. H. Tai (2006) Role of glutamine 148 of human 15-hydroxyprostaglandin dehydrogenase in catalytic oxidation of prostaglandin E2. Bioorg. Med. Chem. 14: 6486–6491.

  16. Lee, J. S., K. R. Lee, S. Lee, H. J. Lee, H. S. Yang, J. Yeo, J. M. Park, B. H. Choi, and E. K. Hong (2017) Polysaccharides isolated from liquid culture broth of Inonotusobliquus inhibit the invasion of human non-small cell Lung carcinoma cells. Biotechnol. Bioprocess Eng. 22: 45–51.

    Article  CAS  Google Scholar 

  17. Oh, M., Y. J. Kim, Y. J. Son, H. S. Yoo, and J. H. Park (2017) Promotive effects of human induced pluripotent stem cellconditioned medium on the proliferation and migration of dermal fibroblasts. Biotechnol. Bioprocess Eng. 22: 561–568.

    Article  CAS  Google Scholar 

  18. Boukamp, P., R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and N. E. Fusenig (1988) Normal keratinization in a spontaneously immortalized Aneuploidhuman keratinocyte cell line. J. Cell Bio. 106: 761–771.

    Article  CAS  Google Scholar 

  19. Kaur Manjal, S., R. Kaur, R. Bhatia, K. Kumar, V. Singh, R. Shankar, R. Kaur, and R. K. Rawal (2017) Synthetic and medicinal perspective of thiazolidinones. Bioorg Chem. 75: 406–423.

    Article  CAS  Google Scholar 

  20. Verma, A. and S. K. Saraf (2008) 4-thiazolidinone—a biologically active scaffold. Eur. J. Med. Chem. 43: 897–905.

    Article  CAS  Google Scholar 

  21. Jo, D. R., Y. O. Kim, R. Kim, Y. C. Chang, D. B. Choi, and H. Cho (2017) Novel rhodanine derivatives are selective algicides against Microcystis aeruginosa. Biotechnol. Bioprocess Eng. 22: 748–757.

    Article  CAS  Google Scholar 

  22. You, D. S., Y. W. Lee, D. B. Choi, Y. C. Chang, and H. Cho (2017) Algicidal effects of thiazolinedione derivatives against Microcystis aeruginosa. Korean J. Chem. Eng. 34: 139–149.

    Article  CAS  Google Scholar 

  23. Cho, H. and H. H. Tai (2002) Thiazolidinediones as a novel class of NAD (+)-dependent 15-hydroxyprostaglandin dehydrogenase inhibitors. Arch. Biochem. Biophys. 405: 247–251.

    Article  CAS  Google Scholar 

  24. Wu, Y., H. H. Tai, and H. Cho (2010) Synthesis and SAR of thiazolidinedione derivatives as 15-PGDH inhibitors. Bioorg. Med. Chem. 18: 1428–1433.

    Article  CAS  Google Scholar 

  25. Wu, Y., S. Karna, C. H. Choi, M. Tong, H. H. Tai, D. H. Na, C. H. Jang, and H. Cho (2011) Synthesis and biological evaluation of novel thiazolidinedione analogues as 15-hydroxyprostaglandindehydrogenase inhibitors. J. Med. Chem. 54: 5260–5264.

    Article  CAS  Google Scholar 

  26. Choi, D. B., Y. L. Piao, Y. Wu, and H. Cho (2013) Control of the intracellular levels of prostaglandin E2 through inhibition of the 15-hydroxyprostaglandin dehydrogenase for wound healing. Bioorg. Med. Chem. 21: 4477–4484.

    Article  CAS  Google Scholar 

  27. Clark, R. A. (1996) Wound repair: Overview and general considerations. pp. 3–50. In: R. A. Clark ( ed. ). The Molecular and Cellular Biology of Wound Repair. Springer US, New York, USA.

    Google Scholar 

  28. Werner, S. and R. Grose (2003) Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83: 835–870.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B04930255).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dubok Choi or Hoon Cho.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, A.R., Choi, D. & Cho, H. Synthesis, Structural Analysis, and Biological Evaluation of Novel ((2,4-dioxothiazolidin-5-ylidene)methyl)phenyl Derivatives. Biotechnol Bioproc E 25, 149–163 (2020). https://doi.org/10.1007/s12257-019-0308-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0308-y

Keywords

Navigation